Admissible Sequences for Twisted Involutions in Weyl Groups

2011 ◽  
Vol 54 (4) ◽  
pp. 663-675 ◽  
Author(s):  
Ruth Haas ◽  
Aloysius G. Helminck

AbstractLetW be a Weyl group, Σ a set of simple reflections inW related to a basis Δ for the root system Φ associated with W and θ an involution such that θ(Δ) = Δ. We show that the set of θ- twisted involutions in W, = {w ∈ W | θ(w) = w–1} is in one to one correspondence with the set of regular involutions . The elements of are characterized by sequences in Σ which induce an ordering called the Richardson–Springer Poset. In particular, for Φ irreducible, the ascending Richardson–Springer Poset of , for nontrivial θ is identical to the descending Richardson–Springer Poset of .

1995 ◽  
Vol 26 (4) ◽  
pp. 361-369
Author(s):  
S. A. YOUSSEF ◽  
S. G. HULSURKAR

A graph is constructed whose vertices are elements of a Weyl group and the edges are defined through nonvanishing of Wey!'s dimension polynomial at the point associated with two elements of the Weyl group. We study the planarity of such graphs on Weyl groups whose associated root system is irreducible. These graphs include four families of infinite number of graphs. We show that very few graphs, essentially five of them, are planar.


2014 ◽  
Vol 26 (06) ◽  
pp. 1450011
Author(s):  
Hsian-Yang Chen ◽  
Ching Hung Lam

In this paper, we construct explicitly certain moonshine type vertex operator algebras generated by a set of Ising vectors I such that (1) for any e ≠ f ∈ I, the subVOA VOA (e, f) generated by e and f is isomorphic to either U2B or U3C; and (2) the subgroup generated by the corresponding Miyamoto involutions {τe | e ∈ I} is isomorphic to the Weyl group of a root system of type An, Dn, E6, E7 or E8. The structures of the corresponding vertex operator algebras and their Griess algebras are also studied. In particular, the central charge of these vertex operator algebras are determined.


Author(s):  
Rosa Winter ◽  
Ronald van Luijk

AbstractLet $$\varGamma $$ Γ be the graph on the roots of the $$E_8$$ E 8 root system, where any two distinct vertices e and f are connected by an edge with color equal to the inner product of e and f. For any set c of colors, let $$\varGamma _c$$ Γ c be the subgraph of $$\varGamma $$ Γ consisting of all the 240 vertices, and all the edges whose color lies in c. We consider cliques, i.e., complete subgraphs, of $$\varGamma $$ Γ that are either monochromatic, or of size at most 3, or a maximal clique in $$\varGamma _c$$ Γ c for some color set c, or whose vertices are the vertices of a face of the $$E_8$$ E 8 root polytope. We prove that, apart from two exceptions, two such cliques are conjugate under the automorphism group of $$\varGamma $$ Γ if and only if they are isomorphic as colored graphs. Moreover, for an isomorphism f from one such clique K to another, we give necessary and sufficient conditions for f to extend to an automorphism of $$\varGamma $$ Γ , in terms of the restrictions of f to certain special subgraphs of K of size at most 7.


1994 ◽  
Vol 37 (3) ◽  
pp. 338-345 ◽  
Author(s):  
D. Ž. Doković ◽  
P. Check ◽  
J.-Y. Hée

AbstractLet R be a root system (in the sense of Bourbaki) in a finite dimensional real inner product space V. A subset P ⊂ R is closed if α, β ∊ P and α + β ∊ R imply that α + β ∊ P. In this paper we shall classify, up to conjugacy by the Weyl group W of R, all closed sets P ⊂ R such that R\P is also closed. We also show that if θ:R —> R′ is a bijection between two root systems such that both θ and θ-1 preserve closed sets, and if R has at most one irreducible component of type A1, then θ is an isomorphism of root systems.


2007 ◽  
Vol 09 (01) ◽  
pp. 1-20
Author(s):  
KEQUAN DING ◽  
SIYE WU

We introduce inversions for classical Weyl group elements and relate them, by counting, to the length function, root systems and Schubert cells in flag manifolds. Special inversions are those that only change signs in the Weyl groups of types Bn, Cnand Dn. Their counting is related to the (only) generator of the Weyl group that changes signs, to the corresponding roots, and to a special subvariety in the flag manifold fixed by a finite group.


Author(s):  
G. I. Lehrer ◽  
T. Shoji

AbstractLet G be a connected reductive linear algebraic group over the complex numbers. For any element A of the Lie algebra of G, there is an action of the Weyl group W on the cohomology Hi(BA) of the subvariety BA (see below for the definition) of the flag variety of G. We study this action and prove an inequality for the multiplicity of the Weyl group representations which occur ((4.8) below). This involves geometric data. This inequality is applied to determine the multiplicity of the reflection representation of W when A is a nilpotent element of “parabolic type”. In particular this multiplicity is related to the geometry of the corresponding hyperplane complement.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
José O. Araujo ◽  
Tim Bratten ◽  
Cesar L. Maiarú

In an article published in 1980, Farahat and Peel realized the irreducible modular representations of the symmetric group. One year later, Al-Aamily, Morris, and Peel constructed the irreducible modular representations for a Weyl group of typeBn. In both cases, combinatorial methods were used. Almost twenty years later, using a geometric construction based on the ideas of Macdonald, first Aguado and Araujo and then Araujo, Bigeón, and Gamondi also realized the irreducible modular representations for the Weyl groups of typesAnandBn. In this paper, we extend the geometric construction based on the ideas of Macdonald to realize the irreducible modular representations of the complex reflection group of typeG(m,1,n).


1991 ◽  
Vol 44 (2) ◽  
pp. 337-344 ◽  
Author(s):  
Philip D. Ryan

Let G be a Weyl group of type B, and T a set of representatives of the conjugacy classes of self-inverse elements of G. For each t in T, we construct a (complex) linear character πt of the centraliser of t in G, such that the sum of the characters of G induced from the πt contains each irreducible complex character of G with multiplicity precisely 1. For Weyl groups of type A (that is, for the symmetric groups), a similar result was published recently by Inglis, Richardson and Saxl.


Sign in / Sign up

Export Citation Format

Share Document