Dispersive liquid–liquid microextraction of 11-nor-Δ9-tetrahydrocannabinol-carboxylic acid applied to urine testing

Bioanalysis ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 87-100
Author(s):  
Leonardo C Rodrigues ◽  
Júlia MM Kahl ◽  
Kauê O de Chinaglia ◽  
Eduardo G de Campos ◽  
José Luiz Costa

Aim: THC-COOH is the major metabolite of Δ9-tetrahydrocannabinol commonly tested in urine to determine cannabis intake. In this study, a method based on dispersive liquid–liquid microextraction was developed for testing THC-COOH in urine. Materials & methods: Hydrolyzed urine specimens were extracted via dispersive liquid–liquid microextraction with acetonitrile (disperser solvent) and chloroform (extraction solvent). Derivatization was performed with N,O-Bis(trimethylsilyl)trifluoroacetamide with 1% trichloro(chloromethyl)silane. Analysis was performed by GC–MS/MS. Results: The method showed acceptable linearity (5–500 ng/ml), imprecision (<10.5%) and bias (<4.9%). Limits of detection and quantitation were 1 and 5 ng/ml, respectively. Twenty-four authentic samples were analyzed, with 22 samples being positive for THC-COOH. Conclusion: The proposed method is more environmentally friendly and provided good sensitivity, selectivity and reproducibility.

2021 ◽  
Vol 13 (35) ◽  
pp. 3978-3986
Author(s):  
Corinna Fischer ◽  
Thomas Göen

A method is presented for the extraction of the UV stabilizer UV-327 and its metabolites from urine with acetonitrile (disperser solvent) and chloroform (extraction solvent), followed by instrumental analysis of the trimethylsilylated analytes.


2019 ◽  
Vol 102 (3) ◽  
pp. 942-951 ◽  
Author(s):  
Danni Yang ◽  
Yi Yang ◽  
Yongxin Li ◽  
Shuo Yin ◽  
Yaling Chen ◽  
...  

Abstract Background: Consistent toxicological evidence indicate that phthalates can cause adverse effects on human health. The concern over phthalate pollution and exposure has been emphasized in recent years. Therefore, the sensitive, reliable, and rapid detection of phthalates in water is of great importance. Objective: In this study, dispersive liquid–liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) combined with HPLC-UV detection was established and applied in the preconcentration and detection of 15 phthalates in drinking and river water samples. Methods: A mixture of acetonitrile (dispersant) and 1-dodecanol (extractant) was injected into water samples, which had been added with sodium chloride. The cloudy solution was formed by hand-shaking. After centrifugation, the sample solution was cooled in a refrigerator, and the solidified organic droplet was collected. It melted at room temperature and was injected into the HPLC system for analysis. The quantification was based on the working curves. Results: Under optimum conditions, this method showed good linearity in the range of 0.1–100 or 0.5–100 μg/L with correlation coefficients greater than 0.999. The method had the LODs ranging from 0.013 to 0.16 μg/L with the enrichment factors of 102–218. The recoveries of the method ranged from 86.8 to 119% with RSDs less than 12.6%. The interday and intraday RSDs were 6.35–13.5% and 3.00–13.7%, respectively. The established method has been successfully applied to the analysis of phthalates in drinking and river waters. Conclusions: The established method is rapid, sensitive, cost-effective, and environmentally friendly. It can be applied to the analysis of 15 phthalates in drinking and river water samples. Highlights: A method of DLLME-SFO combined with HPLC-UV detection has been established for the analysis of 15 phthalates in drinking and river water samples. The established method was rapid, sensitive, accurate, cost-effective, and environmentally friendly. The established method was successfully applied to the analysis of 15 phthalates in bottled, tap, and river water samples.


2020 ◽  
Vol 12 (43) ◽  
pp. 5186-5194 ◽  
Author(s):  
Ramsha Shahid ◽  
Tasneem Gul Kazi ◽  
Hassan Imran Afridi ◽  
Farah Naz Talpur ◽  
Asma Akhtar ◽  
...  

Rapid and environmentally friendly ultrasound-assisted dispersive liquid–liquid microextraction (US-DLLμE) and vortex assisted-emulsification liquid–liquid microextraction (VA-ELLμE) methods are proposed for the speciation of selenium in domestic and mineral water samples.


2009 ◽  
Vol 7 (3) ◽  
pp. 369-374 ◽  
Author(s):  
Khalil Farhadi ◽  
Mir Farajzadeh ◽  
Amir Matin ◽  
Paria Hashemi

AbstractA simple and sensitive dispersive liquid-liquid microextraction method for extraction and preconcentration of pentachlorophenol (PCP) in water samples is presented. After adjusting the sample pH to 3, extraction was performed in the presence of 1% W/V sodium chloride by injecting 1 mL acetone as disperser solvent containing 15 μL tetrachloroethylene as extraction solvent. The proposed DLLME method was followed by HPLC-DAD for determination of PCP. It has good linearity (0.994) with wide linear dynamic range (0.1–1000 μg L−1) and low detection limit (0.03 μg L−1), which makes it suitable for determination of PCP in water samples.


2015 ◽  
Vol 43 (8) ◽  
pp. 1231-1240 ◽  
Author(s):  
Ming-Jie LI ◽  
Hong-Yi ZHANG ◽  
Xiao-Zhe LIU ◽  
Chun-Yan CUI ◽  
Zhi-Hong SHI

2014 ◽  
Vol 675-677 ◽  
pp. 181-184 ◽  
Author(s):  
Gui Qi Huang ◽  
She Ying Dong ◽  
Zhen Yang ◽  
Ting Lin Huang

An ultrasound-assisted ionic liquid based dispersive liquid-liquid microextraction (UA-IL-DLLME) was developed for the determination of four plant hormones (6-benzyladenine (6-BA), kinetin (6-KT), 2, 4-dichlorophenoxy acetic acid (2, 4-D) and uniconazole (UN)) in soil, using high performance liquid chromatography (HPLC)-diode array detection (DAD). Several important parameters including the type and volume of extraction solvent, the volume of disperser solvent, ultrasound time, pH of the solution and salt effect were studied and optimized. Under optimum conditions, the limits of detections (LODs) for the target analytes were in the range of 0.002-0.01 μg g-1. And satisfactory recoveries of the target analytes in the soil samples were 79.3-96.7 %, with relative standard deviations (RSD, n=5) that ranged from 4.3 to 6.7%.


Sign in / Sign up

Export Citation Format

Share Document