Automatic ARIMA Time Series Modeling for Data Aggregation in Wireless Sensor Networks

Author(s):  
Guorui Li ◽  
Wenbo Shi ◽  
Ying Wang
Author(s):  
Durairaj Ruby ◽  
Jayachandran Jeyachidra

Environmental fluctuations are continuous and provide opportunities for further exploration, including the study of overground, as well as underground and submarine, strata. Underwater wireless sensor networks (UWSNs) facilitate the study of ocean-based submarine and marine parameters details and data. Hardware plays a major role in monitoring marine parameters; however, protecting the hardware deployed in water can be difficult. To extend the lifespan of the hardware, the inputs, processing and output cycles may be reduced, thus minimising the consumption of energy and increasing the lifespan of the devices. In the present study, time series similarity check (TSSC) algorithm is applied to the real-time sensed data to identify repeated and duplicated occurrences of data for reduction, and thus improve energy consumption. Hierarchical classification of ANOVA approach (HCAA) applies ANOVA (analysis of variance) statistical analysis model to calculate error analysis for realtime sensed data. To avoid repeated occurrences, the scheduled time to read measurements may be extended, thereby reducing the energy consumption of the node. The shorter time interval of observations leads to a higher error rate with lesser accuracy. TSSC and HCAA data aggregation models help to minimise the error rate and improve accuracy.


Author(s):  
Cong Gao ◽  
Ping Yang ◽  
Yanping Chen ◽  
Zhongmin Wang ◽  
Yue Wang

AbstractWith large deployment of wireless sensor networks, anomaly detection for sensor data is becoming increasingly important in various fields. As a vital data form of sensor data, time series has three main types of anomaly: point anomaly, pattern anomaly, and sequence anomaly. In production environments, the analysis of pattern anomaly is the most rewarding one. However, the traditional processing model cloud computing is crippled in front of large amount of widely distributed data. This paper presents an edge-cloud collaboration architecture for pattern anomaly detection of time series. A task migration algorithm is developed to alleviate the problem of backlogged detection tasks at edge node. Besides, the detection tasks related to long-term correlation and short-term correlation in time series are allocated to cloud and edge node, respectively. A multi-dimensional feature representation scheme is devised to conduct efficient dimension reduction. Two key components of the feature representation trend identification and feature point extraction are elaborated. Based on the result of feature representation, pattern anomaly detection is performed with an improved kernel density estimation method. Finally, extensive experiments are conducted with synthetic data sets and real-world data sets.


2021 ◽  
Vol 40 (5) ◽  
pp. 8727-8740
Author(s):  
Rajvir Singh ◽  
C. Rama Krishna ◽  
Rajnish Sharma ◽  
Renu Vig

Dynamic and frequent re-clustering of nodes along with data aggregation is used to achieve energy-efficient operation in wireless sensor networks. But dynamic cluster formation supports data aggregation only when clusters can be formed using any set of nodes that lie in close proximity to each other. Frequent re-clustering makes network management difficult and adversely affects the use of energy efficient TDMA-based scheduling for data collection within the clusters. To circumvent these issues, a centralized Fixed-Cluster Architecture (FCA) has been proposed in this paper. The proposed scheme leads to a simplified network implementation for smart spaces where it makes more sense to aggregate data that belongs to a cluster of sensors located within the confines of a designated area. A comparative study is done with dynamic clusters formed with a distributive Low Energy Adaptive Clustering Hierarchy (LEACH) and a centralized Harmonic Search Algorithm (HSA). Using uniform cluster size for FCA, the results show that it utilizes the available energy efficiently by providing stability period values that are 56% and 41% more as compared to LEACH and HSA respectively.


Sign in / Sign up

Export Citation Format

Share Document