Flux and Speed Estimation of Induction Motor Driver System Based on Extended State Observer

Author(s):  
Wenxiang Wei ◽  
Guorong Liu
2013 ◽  
Vol 273 ◽  
pp. 414-418
Author(s):  
Wen Xiang Wei ◽  
Xiao Ping Zhang

A flux observer based on the extended state observer (ESO) is proposed for rotor flux estimation and speed identification of indirect field oriented induction motor drives system. The uncertain component including rotor resistance and speed in the stator current equation is extended to a new state, the ESO is then constructed. By the current estimate error, the uncertain component convergences to its actual value and the accurate rotor flux, speed and the rotor time constant are obtained. The accuracy of the ESO independent the rotor resistance and load torque variations, simulations under high and low speed show that the proposed method achieves prefect robust, and the validity and practicability is verified by simulation results.


2021 ◽  
pp. 002029402110286
Author(s):  
Pu Yang ◽  
Peng Liu ◽  
ChenWan Wen ◽  
Huilin Geng

This paper focuses on fast terminal sliding mode fault-tolerant control for a class of n-order nonlinear systems. Firstly, when the actuator fault occurs, the extended state observer (ESO) is used to estimate the lumped uncertainty and its derivative of the system, so that the fault boundary is not needed to know. The convergence of ESO is proved theoretically. Secondly, a new type of fast terminal sliding surface is designed to achieve global fast convergence, non-singular control law and chattering reduction, and the Lyapunov stability criterion is used to prove that the system states converge to the origin of the sliding mode surface in finite time, which ensures the stability of the closed-loop system. Finally, the effectiveness and superiority of the proposed algorithm are verified by two simulation experiments of different order systems.


Sign in / Sign up

Export Citation Format

Share Document