scholarly journals Investigations on the insecticides to the white back planthopper, Sogatella furcifera HORVÁTH, the brown planthopper, Nilaparvata lugens STÅL, and the green rice leafhopper, Nephotettix cincticeps UHLER

1967 ◽  
Vol 9 (0) ◽  
pp. 26-31
Author(s):  
Kunio ENYO ◽  
Junji KOBAYASHI
Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 582
Author(s):  
Jinghua Zhu ◽  
Kunmiao Zhu ◽  
Liang Li ◽  
Zengxin Li ◽  
Weiwei Qin ◽  
...  

Honeydew is a watery fluid excreted by plant sap-feeding insects. It is a waste product for the insect hosts. However, it plays important roles for other organisms, such as serving as a nutritional source for beneficial insects and bacteria, as well as elicitors and effectors modulating plant responses. In this study, shotgun LC–MS/MS analyses were used to identify the proteins in the honeydew from two important rice hemipteran pests, the brown planthopper (Nilaparvata lugens, BPH) and green rice leafhopper (Nephotettix cincticeps, GRH). A total of 277 and 210 proteins annotated to insect proteins were identified in the BPH and GRH honeydews, respectively. These included saliva proteins that may have similar functions as the saliva proteins, such as calcium-binding proteins and apolipophorin, involved in rice plant defenses. Additionally, a total of 52 and 32 Oryza proteins were identified in the BPH and GRH honeydews, respectively, some of which are involved in the plant immune system, such as Pathogen-Related Protein 10, ascorbate peroxidase, thioredoxin and glutaredoxin. Coincidently, 570 and 494 bacteria proteins were identified from the BPH and GRH honeydews, respectively, which included several well-known proteins involved in the plant immune system: elongation factor Tu, flagellin, GroEL and cold-shock proteins. The results of our study indicate that the insect honeydew is a complex fluid cocktail that contains abundant proteins from insects, plants and microbes, which may be involved in the multitrophic interactions of plants–insects–microbes.


2019 ◽  
Vol 86 (4) ◽  
Author(s):  
Tong-Pu Li ◽  
Chun-Ying Zhou ◽  
Si-Si Zha ◽  
Jun-Tao Gong ◽  
Zhiyong Xi ◽  
...  

ABSTRACT The brown planthopper Nilaparvata lugens (Hemiptera) is a major pest of rice crops in Asia. Artificial transinfections of Wolbachia have recently been used for reducing host impacts, but transinfections have not yet been undertaken with another important endosymbiont, Cardinium. This endosymbiont can manipulate the reproduction of hosts through phenotypes such as cytoplasmic incompatibility (CI), which is strong in the related white-backed planthopper, Sogatella furcifera (Hemiptera). Here, we stably infected N. lugens with Cardinium from S. furcifera and showed that it exhibits perfect maternal transmission in N. lugens. The density of Cardinium varied across developmental stages and tissues of the transinfected host. Cardinium did not induce strong CI in N. lugens, likely due to its low density in testicles. The infection did decrease fecundity and hatching rate in the transinfected host, but a decrease in fecundity was not apparent when transinfected females mated with Wolbachia-infected males. The experiments show the feasibility of transferring Cardinium endosymbionts across hosts, but the deleterious effects of Cardinium on N. lugens limit its potential to spread in wild populations of N. lugens in the absence of strong CI. IMPORTANCE In this study we established a Cardinium-infected N. lugens line that possessed complete maternal transmission. Cardinium had a widespread distribution in tissues of N. lugens, and this infection decreased the fecundity and hatching rate of the host. Our findings emphasize the feasibility of transinfection of Cardinium in insects, which expands the range of endosymbionts that could be manipulated for pest control.


1999 ◽  
Vol 89 (6) ◽  
pp. 557-568 ◽  
Author(s):  
R. Turner ◽  
Y.-H. Song ◽  
K.-B. Uhm

AbstractThis paper reports on the performance of an atmospheric numerical model called BLAYER which has been adapted to forecast the movement of migrant brown planthopper Nilaparvata lugens (Stål) and white-backed planthopper Sogatella furcifera (Horvarth) populations from China to Korea. Comparison of model forecasts with trapping data for the 1987 and 1988 migration seasons indicated: (i) that the model is capable of successfully simulating the movement of planthoppers to Korea; (ii) that the model has sufficient detail to simulate insect movement into different regions of Korea; (iii) the source region for early season migrants is most likely to be south-eastern China (i.e. south of 25°N and east of 115°E); (iv) later season migrants may not necessarily always originate from an expanded northward region (south of 30°N); (v) the flight level of migrants may vary from about 500 to 2000 m altitude from one migration episode to another; and (vi) flight times ranging between 24 and 45 h are required to explain the migratory influxes. The results reported here have led to BLAYER forecasts of planthopper migration being produced on an operational basis within Korea.


Crops ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 166-184
Author(s):  
Finbarr G. Horgan ◽  
Ainara Peñalver-Cruz ◽  
Maria Liberty P. Almazan

The brown planthopper, Nilaparvata lugens (Stål)[BPH], is a damaging pest of rice in Asia. Insecticides and rice varietal resistance are widely implemented BPH management practices. However, outbreaks of BPH have been linked to excessive insecticide use—challenging the compatibility of these two management practices. IR62 is a variety with resistance against BPH, the whitebacked planthopper, Sogatella furcifera Horváth [WBPH], and the green leafhopper, Nephotettix virescens (Distant)[GLH]. We compared BPH responses to IR62 and to the susceptible variety IR64 treated with buprofezin, carbofuran, cartap hydrochloride, cypermethrin, deltamethrin, fipronil, or thiamethoxam + chlorantraniliprole. In greenhouse bioassays, cypermethrin, fipronil and thiamethoxam + chlorantraniliprole reduced egg laying on both varieties, and, together with buprofezin, reduced nymph survival to zero. Buprofezin, carbofuran, and cartap hydrochloride stimulated egg laying, and carbofuran increased nymph biomass, but these effects were reduced on IR62. Planthopper populations were ten times higher on deltamethrin-treated rice than untreated rice in a screenhouse experiment. Host resistance failed to buffer against this insecticide-induced resurgence in BPH and WBPH. However, IR62 reduced the effect in GLH. Rice treated with cypermethrin and fipronil had reduced yields compared to untreated controls, suggesting possible phytotoxic effects. We found little evidence of synergies between the two management practices; but host resistance did buffer against the undesirable effects of some insecticides.


2014 ◽  
Vol 104 (7) ◽  
pp. 794-799 ◽  
Author(s):  
Shu Li ◽  
Han Wang ◽  
Guohui Zhou

Southern rice black-streaked dwarf virus (SRBSDV), a tentative species in the genus Fijivirus, family Reoviridae, is a novel rice virus transmitted by the white-backed planthopper (Sogatella furcifera). Since its discovery in 2001, SRBSDV has spread rapidly throughout eastern and southeastern Asia and caused large rice losses in China and Vietnam. Rice ragged stunt virus (RRSV) (genus Oryzavirus, family Reoviridae) is a common rice virus vectored by the brown planthopper (Nilaparvata lugens). RRSV is also widely distributed in eastern and southeastern Asia but has not previously caused serious problems in China owing to its low incidence. With SRBSDV's spread, however, RRSV has become increasingly common in China, and is frequently found in co-infection with SRBSDV. In this study, we show that SRBSDV and RRSV interact synergistically, the first example of synergism between plant viruses in the family Reoviridae. Rice plants co-infected with both viruses displayed enhanced stunting, earlier symptoms, and higher virus titers compared with singly infected plants. Furthermore, white-backed and brown planthoppers acquired SRBSDV and RRSV, respectively, from co-infected plants at higher rates. We propose that increased RRSV incidence in Chinese fields is partly due to synergism between SRBSDV and RRSV.


2014 ◽  
Vol 104 (2) ◽  
pp. 196-201 ◽  
Author(s):  
Han Wang ◽  
Donglin Xu ◽  
Lingling Pu ◽  
Guohui Zhou

In recent years, Southern rice black-streaked dwarf virus (SRBSDV), a tentative species in the genus Fijivirus (family Reoviridae), has spread rapidly and caused serious rice losses in eastern and southeastern Asia. With this virus spread, Rice ragged stunt virus (RRSV, genus Oryzavirus, family Reoviridae) became more common in southern China, usually in co-infection with the former. SRBSDV and RRSV are transmitted by two different species of planthoppers, white-backed planthopper (WBPH, Sogatella furcifera) and brown planthopper (BPH, Nilaparvata lugens), respectively, in a persistent, circulative, propagative manner. In this study, using a Y-shape olfactometer-based device, we tested the host preference of three types of macropterous WBPH adults for healthy or SRBSDV-infected rice plants. The results showed that virus-free WBPHs significantly preferred infected rice plants to healthy plants, whereas both the viruliferous and nonviruliferous WBPHs preferred healthy plants to infected plants. In additional tests, we found that the BPHs significantly preferred healthy plants when they were virus free, whereas RRSV-carrying BPHs preferred SRBSDV-infected rice plants. From these findings, we propose that plant viruses may alter host selection preference of vectors to enhance their spread and that of insects vectoring another virus to result in co-infection with more than one virus.


Sign in / Sign up

Export Citation Format

Share Document