whitebacked planthopper
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 8)

H-INDEX

17
(FIVE YEARS 1)

Crops ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 166-184
Author(s):  
Finbarr G. Horgan ◽  
Ainara Peñalver-Cruz ◽  
Maria Liberty P. Almazan

The brown planthopper, Nilaparvata lugens (Stål)[BPH], is a damaging pest of rice in Asia. Insecticides and rice varietal resistance are widely implemented BPH management practices. However, outbreaks of BPH have been linked to excessive insecticide use—challenging the compatibility of these two management practices. IR62 is a variety with resistance against BPH, the whitebacked planthopper, Sogatella furcifera Horváth [WBPH], and the green leafhopper, Nephotettix virescens (Distant)[GLH]. We compared BPH responses to IR62 and to the susceptible variety IR64 treated with buprofezin, carbofuran, cartap hydrochloride, cypermethrin, deltamethrin, fipronil, or thiamethoxam + chlorantraniliprole. In greenhouse bioassays, cypermethrin, fipronil and thiamethoxam + chlorantraniliprole reduced egg laying on both varieties, and, together with buprofezin, reduced nymph survival to zero. Buprofezin, carbofuran, and cartap hydrochloride stimulated egg laying, and carbofuran increased nymph biomass, but these effects were reduced on IR62. Planthopper populations were ten times higher on deltamethrin-treated rice than untreated rice in a screenhouse experiment. Host resistance failed to buffer against this insecticide-induced resurgence in BPH and WBPH. However, IR62 reduced the effect in GLH. Rice treated with cypermethrin and fipronil had reduced yields compared to untreated controls, suggesting possible phytotoxic effects. We found little evidence of synergies between the two management practices; but host resistance did buffer against the undesirable effects of some insecticides.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1078
Author(s):  
Zhao Li ◽  
Yao Qin ◽  
Ruoheng Jin ◽  
Yunhua Zhang ◽  
Zhijie Ren ◽  
...  

Monitoring is an important component of insecticide resistance management. In this study, resistance monitoring was conducted on 18 field populations in China. The results showed that S. furcifera developed high levels of resistance to chlorpyrifos and buprofezin, and S. furcifera showed low to moderate levels of resistance to imidacloprid, thiamethoxam, dinotefuran, clothianidin, sulfoxaflor, isoprocarb and ethofenprox. Sogatella furcifera remained susceptible or low levels of resistance to nitenpyram. LC50 values of nitenpyram and dinotefuran, imidacloprid, thiamethoxam, clothianidin and chlorpyrifos exhibited significant correlations, as did those between dinotefuran and thiamethoxam, clothianidin, sulfoxaflor, imidacloprid, isoprocarb and buprofezin. Similarly, significant correlations were observed between thiamethoxam and clothianidin, sulfoxaflor and imidacloprid. In addition, the activity of EST in field populations of S. furcifera were significantly correlated with the LC50 values of nitenpyram, thiamethoxam and clothianidin. These results will help inform effective insecticide resistance management strategies to delay the development of insecticide resistance in S. furcifera.


2021 ◽  
Author(s):  
Ling Cheng ◽  
Baoxuan Nong ◽  
Anlong Xu ◽  
Wenai He ◽  
Biqiu Wu ◽  
...  

Abstract Background The whitebacked planthopper (WBPH) has become a significant threat to rice production. Identification of WBPH-resistant germplasm and genes can drive efforts to develop resistance varieties and effectively limit pest damage.Methods Fourteen varieties of rice were surveyed for insect resistance using tests that assessed bulk seedling growth rates, insect feeding activity (via measurements of honeydew excretion weight), and insect development (by counting the number of hatched nymphs). Two resistance varieties N22 and OB677 were crossed with susceptible line 9311 to develop mapping populations, which were applied to map the resistance genes/QTLs.Results The rice variety PTB33 showed high resistance to both brown planthopper (BPH) and WBPH, and varieties N22, RBPH327, and OB677 showed moderate resistance to WBPH. Host choice test and seedling survival rates further verified the WBPH resistance of PTB33, N22, and OB677. By using two F2 mapping populations, two major resistance genes were detected in N22 and OB677. Wbph1 was mapped on chromosome 2 of N22 in a region that harbored the markers RM13650 and RM13478. Its largest logarithm of the odds (LOD) score was 3.94, which explained a 16.6% phenotypic variation. Wbph9 was mapped on chromosome 3 of OB677, where it was flanked by markers RM3513 and RM3525. It had a LOD score of 3.4, explaining a 17.2% phenotypic variation.Conclusions Four varieties PTB33, N22, RBPH327, and OB677 showed resistance to WBPH, of which OB677 was a novel resistance germplasm; and a novel resistance gene Wbph9 was mapped on chromosome 3.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 81
Author(s):  
Eun-Gyeong Kim ◽  
Sopheap Yun ◽  
Jae-Ryoung Park ◽  
Kyung-Min Kim

Whitebacked planthopper (WBPH) is a pest that causes serious damage to rice in Asian countries with a mild climate. WBPH causes severely rice yield losses and grain poor quality each year so needs biological control. Plants resist biotic and abiotic stress using expressing variety genes, such as kinase, phytohormones, transcription factors, and especially secondary metabolites. In this research, quantitative trait locus (QTL) mapping was performed by assigning the WBPH resistance score in the Cheongcheong/Nagdong doubled haploid (CNDH) line in 2018 and 2019. The RM280-RM6909 on chromosome 4 was detected as a duplicate in 2018, 2019, and derived from Cheongcheong. This region includes cell function, kinase, signaling, transcription factors, and secondary metabolites that protect plants from the stress of WBPH. The RM280-RM6909 on chromosome 4 contains candidate genes that are similar to the flavanone 3-hydroxylase (F3H) of rice. The F3H are homologous genes, which play an important role in biosynthesis defending against biotic stress in plants. After WBPH inoculation, the relative expression level of F3H was higher in resistant line than in a susceptible line. The newly identified WBPH resistance gene F3H by QTL mapping can be used for the breeding of rice cultivars that are resistant against WBPH.


Author(s):  
Kaikai Mao ◽  
Zhijie Ren ◽  
Wenhao Li ◽  
Chaoya Liu ◽  
Pengfei Xu ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rahmatullah Jan ◽  
Muhammad Aqil Khan ◽  
Sajjad Asaf ◽  
In-Jung Lee ◽  
Kyung-Min Kim

Abstract The whitebacked planthopper (WBPH), has become a devastating pest for rice crops, causes serious yield losses each year, and urgently needs biological control. Here, we developed a WBPH-resistant rice cultivar by overexpressing the OsF3H gene. A genetic functional analysis of the OsF3H gene confirmed its role in facilitating flavonoid contents and have indicated that the expression of the OsF3H gene is involved in regulation of the downstream genes (OsDFR and OsFLS) of the flavonoid pathway and genes (OsSLR1 and OsWRKY13) involved in other physiological pathways. OxF3H (OsF3H transgenic) plants accumulated significant amounts of the flavonols kaempferol (Kr) and quercetin (Qu) and the anthocyanins delphinidin and cyanidin, compared to the wild type, in response to the stress induced by WBPH. Similarly, OsF3H-related proteins were significantly expressed in OxF3H lines after WBPH infestation. The present study, indicated that the regulation of JA in OxF3H plants was suppressed due the overexpression of the OsF3H gene, which induced the expression of downstream genes related to anthocyanin. Similarly, the OsWRKY13 transcriptional factor was significantly suppressed in OxF3H plants during WBPH infestation. Exogenous application of Kr and Qu increased the survival rates of susceptible TN1 lines in response to WBPH, while decreased the survival rate of first instar WBPHs, indicating that both flavonols exhibit pesticide activity. Phenotypic demonstration also affirms that OxF3H plants show strong resistance to WBPH compared with wild type. Collectively, our result suggested that OsF3H overexpression led to the up-regulation of defense related genes and enhanced rice resistance to WBPH infestation.


Sign in / Sign up

Export Citation Format

Share Document