scholarly journals On Ilmanen’s multiplicity-one conjecture for mean curvature flow with type-$I$ mean curvature

Author(s):  
Haozhao Li ◽  
Bing Wang
2019 ◽  
Author(s):  
Samuel Ssekajja

We classify two main singularities, as type I and type II, associated with null mean curvature flow of screen conformal null hypersurfaces in Lorentzian manifolds. We prove that the flow at a type I singularity is asymptotically self-similar, whereas at a type II singularity there is a blow-up solution which is an eternal solution. For further analysis of the above two singularities, we define null translating solitons and use them to prove some Harnack estimates for null mean curvature flow under certain geometric conditions.


2010 ◽  
Vol 21 (11) ◽  
pp. 1429-1438 ◽  
Author(s):  
XIAOLI HAN ◽  
JUN SUN

In this paper we first give an integral condition under which the mean curvature flow can be extended in arbitrary codimension. Then we investigate some properties of Type I singularity.


2020 ◽  
Vol 18 (1) ◽  
pp. 1518-1530
Author(s):  
Xuesen Qi ◽  
Ximin Liu

Abstract In this paper, we discuss the monotonicity of the first nonzero eigenvalue of the Laplace operator and the p-Laplace operator under a forced mean curvature flow (MCF). By imposing conditions associated with the mean curvature of the initial hypersurface and the coefficient function of the forcing term of a forced MCF, and some special pinching conditions on the second fundamental form of the initial hypersurface, we prove that the first nonzero closed eigenvalues of the Laplace operator and the p-Laplace operator are monotonic under the forced MCF, respectively, which partially generalize Mao and Zhao’s work. Moreover, we give an example to specify applications of conclusions obtained above.


2017 ◽  
Vol 369 (12) ◽  
pp. 8319-8342 ◽  
Author(s):  
Glen Wheeler ◽  
Valentina-Mira Wheeler

Author(s):  
Peng Lu ◽  
Jiuru Zhou

AbstractWe construct the ancient solutions of the hypersurface flows in Euclidean spaces studied by B. Andrews in 1994.As time {t\rightarrow 0^{-}} the solutions collapse to a round point where 0 is the singular time. But as {t\rightarrow-\infty} the solutions become more and more oval. Near the center the appropriately-rescaled pointed Cheeger–Gromov limits are round cylinder solutions {S^{J}\times\mathbb{R}^{n-J}}, {1\leq J\leq n-1}. These results are the analog of the corresponding results in Ricci flow ({J=n-1}) and mean curvature flow.


Sign in / Sign up

Export Citation Format

Share Document