Distribution of Inventory Level on a Repairable Parts System under Performance-Based Contract

2016 ◽  
Vol 5 (2) ◽  
Author(s):  
Liu Jiliang ◽  
Liu Mingwu
GIS Business ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. 577-585
Author(s):  
T. Vivekanandan ◽  
S. Sachithanantham

In inventory control, suitable models for various real life systems are constructed with the objective of determining the optimal inventory level.  A new type of inventory model using the so-called change of distribution property is analyzed in this paper. There are two machines M1 and M2  in series and the output of M1 is the input of M2. Hence a reserve inventory between M1 and M2 is to be maintained. The method of obtaining the optimal size of reserve inventory, assuming cost of excess inventory, cost of shortage and when the rate of consumption of M2  is a constant, has already been attempted.  In this paper, it is assumed that the repair time of M1  is a random variable and the distribution of the same undergoes a change of distribution  after the truncation point X0 , which is taken to be a random variable.  The optimal size of the reserve inventory is obtained under the above said  assumption . Numerical illustrations are also provided.


1984 ◽  
Vol 16 (2) ◽  
pp. 378-401 ◽  
Author(s):  
A. G. De kok ◽  
H. C. Tijms ◽  
F. A. Van der Duyn Schouten

We consider a production-inventory problem in which the production rate can be continuously controlled in order to cope with random fluctuations in the demand. The demand process for a single product is a compound Poisson process. Excess demand is backlogged. Two production rates are available and the inventory level is continuously controlled by a switch-over rule characterized by two critical numbers. In accordance with common practice, we consider service measures such as the average number of stockouts per unit time and the fraction of demand to be met directly from stock on hand. The purpose of the paper is to derive practically useful approximations for the switch-over levels of the control rule such that a pre-specified value of the service level is achieved.


2018 ◽  
Vol 13 (4) ◽  
pp. 1037-1056 ◽  
Author(s):  
Huthaifa AL-Khazraji ◽  
Colin Cole ◽  
William Guo

Purpose This paper aims to optimise the dynamic performance of production–inventory control systems in terms of minimisation variance ratio between the order rate and the consumption, and minimisation the integral of absolute error between the actual and the target level of inventory by incorporating the Pareto optimality into particle swarm optimisation (PSO). Design/method/approach The production–inventory control system is modelled and optimised via control theory and simulations. The dynamics of a production–inventory control system are modelled through continuous time differential equations and Laplace transformations. The simulation design is conducted by using the state–space model of the system. The results of multi-objective particle swarm optimisation (MOPSO) are compared with published results obtained from weighted genetic algorithm (WGA) optimisation. Findings The results obtained from the MOPSO optimisation process ensure that the performance is systematically better than the WGA in terms of reducing the order variability (bullwhip effect) and improving the inventory responsiveness (customer service level) under the same operational conditions. Research limitations/implications This research is limited to optimising the dynamics of a single product, single-retailer single-manufacturer process with zero desired inventory level. Originality/value PSO is widely used and popular in many industrial applications. This research shows a unique application of PSO in optimising the dynamic performance of production–inventory control systems.


2017 ◽  
Vol 12 (7) ◽  
pp. 115 ◽  
Author(s):  
MdAfzalul Aftab ◽  
Qin Yuanjian ◽  
Nadia Kabir

The successful implementation of push-pull supply chain management strategy has an important role in improving the competitiveness of an organization. The objective of a push-pull strategy is to minimize the holding of inventory level in finished form and rather produce finished goods from semi-finished inventory only upon receiving final order. One of the vital building blocks of push-pull supply chain strategy is postponement. The main objective of this review paper is to discuss the concept of postponement and its sub-categories such as product postponement and process postponement and their benefits. Then it is investigated how two prominent fast fashion retailers who are also categorized as original brand manufacturers in the apparel value chain apply the two variants of process postponement e.g. process standardization and process re-sequencing in their manufacturing operations to activate push pull supply chain strategy. The push-pull supply chain strategy in turn helps to reduce their order-to-delivery lead time to stores, reduce inventory holding level and minimize both physical costs and market mediation costs. The paper ends with concluding remarks. A framework is developed to illustrate the push-pull supply mechanism. This paper is a useful resource for practitioners in apparel supply chain willing to remove inefficiencies, costs and risks in their operations.


2002 ◽  
Vol 15 (3) ◽  
pp. 235-245
Author(s):  
Lakhdar Aggoun ◽  
Lakdere Benkherouf

This paper is concerned with a discrete time, discrete state inventory model for items of changing quality. Items are assumed to be in one of a finite number, M, of quality classes that are ordered in such a way that Class 1 contains the best quality and the last class contains the pre-perishable quality. The changes of items' quality are dependent on the state of the ambient environment. Furthermore, at each epoch time, items of different classes may be sold or moved to a lower quality class or stay in the same class. These items are priced according to their quality, and costs are incurred as items lose quality. Based on observing the history of the inventory level and prices, we propose recursive estimators as well as predictors for the joint distribution of the accumulated losses and the state of the environment.


2017 ◽  
Vol 4 (1) ◽  
pp. 8
Author(s):  
Adhi Putra Mahardika ◽  
Muhammad Nashir Ardiansyah ◽  
Efrata Denny S. Yunus

Spare parts is one of the production support components which plays an important role for the survival<br />of gas production in the gas processing facility owned by SKN JOB Pertamina Talisman Jambi Merang. The<br />high inventory level increased the high inventory cost for the industry which get the benefit from the efficiency<br />of processes and resources. This research involved consumable spare parts for Solar Turbine engine as much<br />as 25 SKUs with demand character patterned lumpy demand and Poisson distribution. The implementation<br />of policies using Periodic Review (R, s, S) with Power Approximation approach in the inventory system<br />capable to generate a lower total cost inventory by pressing the backorder volume, the booking volume and the<br />inventory levels in a balanced manner. Calculation of Periodic Review (R, s, S) with Power Approximation<br />approach resulted inventory parameter which was able to press the total cost of inventory at 8.54% lower and<br />increase the service level by 1.11%.


2019 ◽  
Vol 10 (5) ◽  
pp. 1679 ◽  
Author(s):  
Abhishek Kanti Biswas ◽  
Sahidul Islam

The inventory system has been drawing more intrigue because this system deals with the decision that minimizes the total average cost or maximizes the total average profit. For any farm, the demand for any items depends upon population, selling price and frequency of advertisement etc. Most of the model, it is assumed that deterioration of any item in inventory starts from the beginning of their production. But in reality, many goods are maintaining their good quality or original condition for some time. So, price discount is availed for defective items. Our target is to calculate the total optimal cost and the optimal inventory level for this inventory model in a crisp and fuzzy environment. Here Holding cost taken as constant and no-shortages are allowed. The cost parameters are considered as Triangular Fuzzy Numbers and to defuzzify the model Signed Distance Method is applied. A numerical example of the optimal solution is given to clarify the model. The changes of different parameters effect on the optimal total cost are presented and sensitivity analysis is given.JEL Classification: C44, Y80, C61Mathematics Subject Classification: 90B05


Sign in / Sign up

Export Citation Format

Share Document