Interannual Variability of Subsurface Intrusion of Low-Temperature and Salinity Shelf Water into the Kuroshio in the East China Sea

2017 ◽  
Vol 6 (3) ◽  
Author(s):  
Peng Qi ◽  
Yun-Xia Guo
2004 ◽  
Vol 60 (5) ◽  
pp. 853-863 ◽  
Author(s):  
Atsuhiko Isobe ◽  
Eiji Fujiwara ◽  
Pil-Hun Chang ◽  
Koichi Sugimatsu ◽  
Manabu Shimizu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chen-Tung Arthur Chen ◽  
Ting-Hsuan Huang ◽  
Chi-Hsuan Wu ◽  
Haiyan Yang ◽  
Xinyu Guo

AbstractThe Kuroshio—literally “the Black Stream”—is the most substantial current in the Pacific Ocean. It was called the Black Stream because this oligotrophic current is so nutrient-poor in its euphotic zone that the water appears black without the influence of phytoplankton and the associated, often colored dissolved organic matter. Yet, below the euphotic layer, nutrient concentrations increase with depth while current speed declines. Consequently, a core of maximum nutrient flux, the so-called nutrient stream, develops at a depth of roughly between 200 and 800 m. This poorly studied nutrient stream transports nutrients to and supports high productivity and fisheries on the East China Sea continental shelf; it also transports nutrients to and promotes increased productivity and fisheries in the Kuroshio Extension and the subarctic Pacific Ocean. Three modes of the Kuroshio nutrient stream are detected off SE Taiwan for the first time: one has a single-core; one has two cores that are apparently separated by the ridge at 120.6–122° E, and one has two cores that are separated by a southward flow above the ridge. More importantly, northward nutrient transports seem to have been increasing since 2015 as a result of a 30% increase in subsurface water transport, which began in 2013. Such a nutrient stream supports the Kuroshio's high productivity, such as on the East China Sea continental shelf and in the Kuroshio Extension SE of Japan.


2021 ◽  
pp. 1-43
Author(s):  
Yoshi N. Sasaki ◽  
Chisato Umeda

AbstractIt has been reported that the sea surface temperature (SST) trend of the East China Sea during the 20th century was a couple of times larger than the global mean SST trend. However, the detailed spatial structure of the SST trend in the East China Sea and its mechanism have not been understood. The present study examines the SST trend in the East China Sea from 1901 to 2010 using observational data and a Regional Ocean Modeling System (ROMS) with an eddy-resolving horizontal resolution. A comparison among two observational datasets and the model output reveal that enhanced SST warming occurred along the Kuroshio and along the coast of China over the continental shelf. In both regions, the SST trends were the largest in winter. The heat budget analysis using the model output indicates that the upper layer temperature rises in both regions were induced by the trend of ocean advection, which was balanced to the increasing of surface net heat release. In addition, the rapid SST warming along the Kuroshio was induced by the acceleration of the Kuroshio. Sensitivity experiments revealed that this acceleration was likely caused by the negative wind stress curl anomalies over the North Pacific. In contrast, the enhanced SST warming along the China coast resulted from the ocean circulation change over the continental shelf by local atmospheric forcing.


Sign in / Sign up

Export Citation Format

Share Document