scholarly journals Neuropathic Pain Related with Spinal Disorders: A Systematic Review

2017 ◽  
Vol 11 (4) ◽  
pp. 661-674 ◽  
Author(s):  
Kwang-Sup Song ◽  
Jae Hwan Cho ◽  
Jae-Young Hong ◽  
Jae Hyup Lee ◽  
Hyun Kang ◽  
...  

<p>Systematic literature review. To review the evidence from high-quality studies regarding the treatment of neuropathic pain originating specifically from spinal disorders. In general, treatment guidelines for neuropathic pain cover all its various causes, including medical disease, peripheral neuropathy, and cancer. However, the natural history of neuropathic pain originating from spinal disorders may differ from that of the pain originating from other causes or lesions. An expert research librarian used terms related to neuropathic pain and spinal disorders, disc herniation, stenosis, and spinal cord injury to search in MEDLINE, Embase, and Cochrane CENTRAL for primary research from January 2000 to October 2015. Among 2,313 potential studies of interest, 25 randomized controlled trials (RCTs) and 21 systematic reviews (SRs) were included in the analysis. The selection was decided based on the agreement of two orthopedic surgeons. There was a lack of evidence about medication for radiculopathy arising from disc herniation and stenosis, but intervention procedures, including epidural block, showed positive efficacy in radiculopathy and also limited efficacy in spinal stenosis. There was some evidence based on the short-term follow-up regarding surgery being superior to conservative treatments for radiculopathy and stenosis. There was limited evidence regarding the efficacy of pharmacological and electric or magnetic stimulation therapies for neuropathic pain after spinal cord injury. This review of RCTs and SRs with high-quality evidence found some evidence regarding the efficacy of various treatment modalities for neuropathic pain related specifically to spinal disorders. However, there is a need for much more supportive evidence.</p>

2021 ◽  
pp. 097275312110463
Author(s):  
Gurwattan S. Miranpuri ◽  
Parul Bali ◽  
Justyn Nguyen ◽  
Jason J Kim ◽  
Shweta Modgil ◽  
...  

Spinal cord injuries incite varying degrees of symptoms in patients, ranging from weakness and incoordination to paralysis. Common amongst spinal cord injury (SCI) patients, neuropathic pain (NP) is a debilitating medical condition. Unfortunately, there remain many clinical impediments in treating NP because there is a lack of understanding regarding the mechanisms behind SCI-induced NP (SCINP). Given that more than 450,000 people in the United States alone suffer from SCI, it is unsatisfactory that current treatments yield poor results in alleviating and treating NP. In this review, we briefly discussed the models of SCINP along with the mechanisms of NP progression. Further, current treatment modalities are herein explored for SCINP involving pharmacological interventions targeting glia cells and astrocytes. The studies presented in this review provide insight for new directions regarding SCINP alleviation. Given the severity and incapacitating effects of SCINP, it is imperative to study the pathways involved and find new therapeutic targets in coordination with stem cell research, and to develop a new gold-standard in SCINP treatment.


2012 ◽  
Vol 2012 ◽  
pp. 1-31 ◽  
Author(s):  
Mary J. Eaton ◽  
Yerko Berrocal ◽  
Stacey Q. Wolfe

Effective treatment of sensory neuropathies in peripheral neuropathies and spinal cord injury (SCI) is one of the most difficult problems in modern clinical practice. Cell therapy to release antinociceptive agents near the injured spinal cord is a logical next step in the development of treatment modalities. But few clinical trials, especially for chronic pain, have tested the potential of transplant of cells to treat chronic pain. Cell lines derived from the human neuronal NT2 cell line parentage, the hNT2.17 and hNT2.19 lines, which synthesize and release the neurotransmitters gamma-aminobutyric acid (GABA) and serotonin (5HT), respectively, have been used to evaluate the potential of cell-based release of antinociceptive agents near the lumbar dorsal (horn) spinal sensory cell centers to relieve neuropathic pain after PNS (partial nerve and diabetes-related injury) and CNS (spinal cord injury) damage in rat models. Both cell lines transplants potently and permanently reverse behavioral hypersensitivity without inducing tumors or other complications after grafting. Functioning as cellular minipumps for antinociception, human neuronal precursors, like these NT2-derived cell lines, would likely provide a useful adjuvant or replacement for current pharmacological treatments for neuropathic pain.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chiaki Yamada ◽  
Aiko Maeda ◽  
Katsuyuki Matsushita ◽  
Shoko Nakayama ◽  
Kazuhiro Shirozu ◽  
...  

Abstract Background Patients with spinal cord injury (SCI) frequently complain of intractable pain that is resistant to conservative treatments. Here, we report the successful application of 1-kHz high-frequency spinal cord stimulation (SCS) in a patient with refractory neuropathic pain secondary to SCI. Case presentation A 69-year-old male diagnosed with SCI (C4 American Spinal Injury Association Impairment Scale A) presented with severe at-level bilateral upper extremity neuropathic pain. Temporary improvement in his symptoms with a nerve block implied peripheral component involvement. The patient received SCS, and though the tip of the leads could not reach the cervical vertebrae, a 1-kHz frequency stimulus relieved the intractable pain. Conclusions SCI-related symptoms may include peripheral components; SCS may have a considerable effect on intractable pain. Even when the SCS electrode lead cannot be positioned in the target area, 1-kHz high-frequency SCS may still produce positive effects.


Author(s):  
Andrew D. Gaudet ◽  
Laura K. Fonken ◽  
Monica T. Ayala ◽  
Steven F. Maier ◽  
Linda R. Watkins

2011 ◽  
Vol 14 (5) ◽  
pp. 583-597 ◽  
Author(s):  
Friederike Knerlich-Lukoschus ◽  
Beata von der Ropp-Brenner ◽  
Ralph Lucius ◽  
Hubertus Maximilian Mehdorn ◽  
Janka Held-Feindt

Object Central neuropathic pain is a frequent challenging complication after spinal cord injury (SCI), and specific therapeutic approaches remain elusive. The purpose of the present investigations was to identify potential key mediators of these pain syndromes by analyzing detailed expression profiles of important chemokines in an experimental SCI paradigm of posttraumatic neuropathic pain in rats. Methods Expression of CCR1, CCL3(MIP-1α), CXCR4, and CXCL12(SDF-1α) was investigated in parallel with behavioral testing for mechanical and thermal nociceptive thresholds after standardized SCI; 100-kdyn (moderate injury) and 200-kdyn (severe injury) force-defined thoracic spinal cord contusion lesions were applied via an Infinite Horizon Impactor at the T-9 level. Sham controls received laminectomies. Hindlimb locomotor function as well as mechanical and thermal sensitivities were monitored weekly by standardized behavioral testing after SCI. Chemokine expression was analyzed by real-time reverse transcriptase polymerase chain reaction in the early (7 days postoperatively) and late (42 days postoperatively) time courses after SCI, and immunohistochemical analysis (anatomical and quantitative) was performed 2, 7, 14, and 42 days after lesioning. Double staining with cellular markers and pain-related peptides (substance P and CGRP) or receptors (TRPV-1, TRPV-2, VRL-1, and TLR-4) was performed. Based on data obtained from behavioral testing, quantified immunohistochemical chemokine expressions in individual animals were correlated with the respective mechanical and thermal sensitivity thresholds 6 weeks after SCI. Results After 200-kdyn lesions, the animals exhibited prolonged reduction in their nociceptive thresholds, while 100-kdyn groups showed pain-related behaviors only in the early time course after SCI. Investigated chemokines were widely induced after SCI, involving cervical, thoracic, and lumbar spinal cord levels far beyond the lesion core. CCR1 and CCL3 were induced significantly in the dorsal horns 2 days after lesioning and remained at high levels after SCI with significantly higher intensities after 200-kdyn than 100-kdyn contusions. CXCR4 and CXCL12 levels continuously increased from 2 to 42 days after moderate and severe lesions. Additionally, chemokines were induced significantly in dorsal columns, with highest density levels 42 days after 200-kdyn lesions. In dorsal horns, CCR1 was coexpressed with TRPV-1 while CXCR4 and CXCL12 were partially coexpressed with substance P and CGRP. In dorsal columns, CCL3/CCR1 colabeled with GFAP, TRPV-2, TRPV-1, TLR-4; CXCR4/CXCL12 coexpressed with GFAP, CD68/ED1, and TLR4. Chemokine immunoreactivity density levels, especially CCL3 and its receptor, correlated in part significantly with nociceptive thresholds. Conclusions The authors report lesion grade–dependent upregulation of different chemokines/chemokine receptors after spinal cord contusion lesions in pain-processing spinal cord regions in a clinically relevant model of traumatic SCI in rats. Prolonged chemokine induction further correlated with below-level pain development in the delayed time course after severe SCI and was coexpressed with pain-associated peptides and receptors, suggesting that chemokines play a crucial role in chronic central pain mechanisms after SCI.


Sign in / Sign up

Export Citation Format

Share Document