Preparation of α-Si3N4Powder, in Reaction System Containing Molten Salt, by SHS (Part 3. Reaction Mechanism)

2004 ◽  
Vol 41 (12) ◽  
pp. 907-914
2012 ◽  
Vol 159 (4) ◽  
pp. F63-F67 ◽  
Author(s):  
C. P. Fabian ◽  
V. Luca ◽  
P. Chamelot ◽  
L. Massot ◽  
C. Caravaca ◽  
...  

ChemInform ◽  
2015 ◽  
Vol 46 (51) ◽  
pp. no-no
Author(s):  
Rocio Estefania Rojas-Hernandez ◽  
Fernando Rubio-Marcos ◽  
Ricardo Henrique Goncalves ◽  
Miguel Angel Rodriguez ◽  
Emmanuel Veron ◽  
...  

1986 ◽  
Vol 51 (12) ◽  
pp. 2693-2701 ◽  
Author(s):  
Marta Mrákavová ◽  
Ľudovít Treindl

A modified Belousov-Zhabotinskii oscillation system involving ethyl ester of 3-oxobutanoic acid and Fe(phen)32+ - Fe(phen)33+ as redox catalyst is remarkable in that it shows an oxygen-induced excitability. The oscillating state, involving 4-5 oscillations in the absorbancy of Fe(phen)32+ ions, comes soon to its end but can be restored by shaking the reaction system, thus incresing the transport of oxygen from the air. This phenomenon is not influenced by Cl- ions in a low concentration, but if this is equal to 10-3 mol dm-3 or higher, no oscillations are observed, the increase of the concentration of Fe(phen)32+ ions is autocatalytic in character and can be reproduced several times by shaking or stirring the solution. These phenomena are discussed in terms of a probable reaction mechanism.


Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2463 ◽  
Author(s):  
Le Cao ◽  
Simeng Li ◽  
Ziwei Yi ◽  
Mengmeng Gao

Carbon Bond Mechanism IV (CBM-IV) is a widely used reaction mechanism in which VOCs are grouped according to the molecular structure. In the present study, we applied a sensitivity analysis on the CBM-IV mechanism to clarify the importance of each reaction under two different initial conditions (urban and low-NO scenarios). The reactions that exert minor influence on the reaction system are then screened out from the mechanism, so that a reduced version of the CBM-IV mechanism under specific initial conditions can be obtained. We found that in a typical urban condition, 11 reactions can be removed from the original CBM-IV mechanism, and the deviation is less than 5% between the results using the original CBM-IV mechanism and the reduced mechanism. Moreover, in a low-NO initial condition, two more reactions, both of which are nitrogen-associated reactions, can be screened out from the reaction mechanism, while the accuracy of the simulation is still maintained. It is estimated that the reduction of the CBM-IV mechanism can save 11–14% of the computing time in the calculation of the chemistry in a box model simulation.


Author(s):  
John Ross ◽  
Igor Schreiber ◽  
Marcel O. Vlad

Chemical kinetics as a science has existed for more than a century. It deals with the rates of reactions and the details of how a given reaction proceeds from reactants to products. In a chemical system with many chemical species, there are several questions to be asked: What species react with what other species? In what temporal order? With what catalysts? And with what results? The answers constitute the macroscopic reaction mechanism. The process can be described macroscopically by listing the reactants, intermediates, products, and all the elementary reactions and catalysts in the reaction system. The present book is a treatise and text on the determination of complex reaction mechanisms in chemistry and in chemical reaction systems that occur in chemical engineering, biochemistry, biology, biotechnology, and genomics. A basic knowledge of chemical kinetics is assumed. Several approaches are suggested for the deduction of information on the causal chemical connectivity of the species, on the elementary reactions among the species, and on the sequence of the elementary reactions that constitute the reaction pathway and the reaction mechanism. Chemical reactions occur by the collisions of molecules, and such an event is called an elementary reaction for specified reactant and product molecules. A balanced stoichiometric equation for an elementary reaction yields the number of each type of molecule according to conservation of atoms, mass, and charge. Figure 1.1 shows a relatively simple reaction mechanism for the decomposition of ozone by light, postulated to occur in a series of three elementary steps. (The details of collisions of molecules and bond rearrangements are not discussed.) All approaches are based on the measurements of the concentrations of chemical species in the whole reaction system, not on parts, as has been the practice. One approach is called the pulse method, in which a pulse of concentration of one or more species of arbitrary strength is applied to a reacting system and the responses of as many species as possible are measured. From these responses causal chemical connectivities may be inferred. The basic theory is explained, demonstrated on a model mechanism, and tested in an experiment on a part of glycolysis.


2014 ◽  
Vol 12 (3) ◽  
pp. 325-331 ◽  
Author(s):  
Qingling Zeng ◽  
Lulu Chen ◽  
Xianyi Song ◽  
Gang Hu ◽  
Lin Hu

AbstractThis paper reports a new method for determination of VB6 (pyridoxine hydrochloride) by its perturbation effects on a novel Belousov-Zhabotinskii (BZ) oscillating system. This novel BZ system, in which malic acid serves as the substrate, contains an enzyme-like complex, macrocyclic complex {[CuL](ClO4)2}, as catalyst. The ligand L in the complex is 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene. Results show that the addition of pyridoxine hydrochloride can perturb the oscillation amplitude and period, and the change of the oscillation amplitude is linearly proportional to the concentration of pyridoxine hydrochloride in the range of 5×10−7−2.5×10−4 M. The obtained RSD with seven samples is 3.073%. An assay of pharmaceutical tablets of vitamin B6 was evaluated. Some foreign ions were studied with respect to their possible influence on the determination of pyridoxine hydrochloride. The factors which influence this reaction include the concentration of reactant, the temperature of the reaction, property of catalyst, etc. Furthermore, the possible reaction mechanism has been proposed using the Field-Körös-Noyes (FKN) model.


Sign in / Sign up

Export Citation Format

Share Document