molten salt method
Recently Published Documents


TOTAL DOCUMENTS

429
(FIVE YEARS 111)

H-INDEX

34
(FIVE YEARS 8)

Author(s):  
Jingjie Yang ◽  
Hongjuan Sun ◽  
Tongjiang Peng ◽  
Li Zeng ◽  
Xin Zhou

Non-biodegradable copper (Cu) and lead (Pb) contaminants in water are highly toxic and have series adverse effects. Therefore, it is very important to extract heavy metals from wastewater before it is discharged into the environment. Adsorption is a cost-effective alternative method for wastewater treatment. Choosing a low-cost adsorbent can help reduce the cost of adsorption. In this study, conversion of reside after extracting aluminum (REA) produced by sub-molten salt method transform high-alumina coal fly ash (CFA) into 11Å-tobermorite to adsorb Cu(II) and Pb(II) from aqueous solutions at room temperature. The synthesis of the adsorbent was confirmed using scanning electron microscope (SEM), X-ray diffractometer (XRD) and Brunauer–Emmett–Teller (BET) method surface analysis. To study the adsorption characteristics, factors such as initial Cu(II) and Pb(II) concentration, pH, contact time, adsorption characteristics and temperature were investigated in batch mode. The maximum adsorption capacity of Cu(II) and Pb(II) was 177.1 mg·g−1 and 176.2 mg·g−1, respectively. The Langmuir adsorption model was employed to better describe the isothermal adsorption behavior and confirm the monolayer adsorption phenomenon. The pseudo-second-order kinetic model was used to highlight Cu(II) and Pb(II) adsorption kinetics. Thermodynamic analysis indicated the removal Cu(II) and Pb(II) by TA-adsorbent was a nonspontaneous and exothermic reaction. The obtained results are of great significance to the conversion of industrial waste to low-cost adsorbent for Cu(II) and Pb(II) removal from water.


Author(s):  
Wendong Tan ◽  
Xiaoshuang Guo ◽  
Yiming She ◽  
Hongshan Li ◽  
Yuan Lei ◽  
...  

2022 ◽  
Vol 891 ◽  
pp. 161987
Author(s):  
Weiyi Hao ◽  
Jiawei Zhang ◽  
Chen Yuan ◽  
Zilin Lu ◽  
Ben Ma ◽  
...  

2022 ◽  
Vol 29 (1) ◽  
Author(s):  
Jian Sun ◽  
Jing Zhou ◽  
Zhiwei Hu ◽  
Ting-Shan Chan ◽  
Renduo Liu ◽  
...  

As potential nuclear waste host matrices, two series of uranium-doped Nd2Zr2O7 nanoparticles were successfully synthesized using an optimized molten salt method in an air atmosphere. Our combined X-ray diffraction, Raman and X-ray absorption fine-structure (XAFS) spectroscopy studies reveal that uranium ions can precisely substitute the Nd site to form an Nd2–x U x Zr2O7+δ (0 ≤ x ≤ 0.2) system and the Zr site to form an Nd2Zr2–y U y O7+δ (0 ≤ y ≤ 0.4) system without any impurity phase. With increasing U concentration, there is a phase transition from pyrochlore (Fd 3 m) to defect fluorite (Fm 3 m) structures in both series of U-doped Nd2Zr2O7. The XAFS analysis indicates that uranium exists in the form of high-valent U6+ in all samples. To balance the extra charge for substituting Nd3+ or Zr4+ by U6+, additional oxygen is introduced accompanied by a large structural distortion; however, the Nd2Zr1.6U0.4O7+δ sample with high U loading (20 mol%) still maintains a regular fluorite structure, indicating the good solubility of the Nd2Zr2O7 host for uranium. This study is, to the best of our knowledge, the first systematic study on U-incorporated Nd2Zr2O7 synthesized via the molten salt method and provides convincing evidence for the feasibility of accurately immobilizing U at specific sites.


Author(s):  
Jie Li ◽  
Mengting Xia ◽  
Lin Zhang ◽  
Junhui Tao ◽  
Chuanhui Wang ◽  
...  

Effective removal of the organic pollutants from aqueous solution is significative and challenging for environmental sustainability. The high-performance adsorbent materials need to be developed. In this study, oxygen-rich fish-scale-like porous boron nitride (O-PBN) was facilely synthesized only at 900[Formula: see text]C (about 400[Formula: see text]C lower than that of the conventional process) through the molten salt method. The adsorption capacity of the as-prepared O-PBN for Methylene Blue (MB) from water was 422.6 mg/g, resulting from oxidizing groups and B–O bonds induced by oxygen doping as well as fish-scale-like structure composed of the BN nanoflakes. Moreover, the initial removal capacity of O-PBN only lost 7.6% even after 10 adsorption–regeneration cycles due to their strong resistance to oxidation. The unique B–O polar covalent bond, fish-scale-like two-dimensional nanostructure exposing the active adsorption sites to the surface ((002) crystal plane) and high specific surface area of O-PBN are confirmed to be the key factors in significantly enhancing water purification and regeneration performance. Overall, the synthetic method should help to a low-temperature and facile fabrication of O-PBN for effective water cleaning.


2021 ◽  
Author(s):  
Yan Ran ◽  
Ping Hong ◽  
Jie Ren ◽  
Bingshen Wang ◽  
Mingjing Xiao ◽  
...  

Abstract Aqueous zinc-ion batteries (ZIBs) is a potential energy storage system due to its advantages of low cost, good safety, and high theoretical capacity (820 mAh g-1). However, the lack of cathode materials with long cycle stability severely restricts the development of ZIBs. In this paper, V2O5/ NaV6O15 nanocomposites are synthesized by molten salt method in one step and used as cathode material for ZIBs, which have good electrochemical performances. The specific capacity of the materials remain 160 mAh g-1 when the current density is 0.5 A g-1 after 1000 cycles, and the capacity retention rate is 102.03% when the current density is 5 A g-1 for 1000 cycles. This is mainly due to the large number of active sites generated by crystal defects and the synergistic interaction between the dual-phase materials, which reduces the stress of ions inserted/extracted during the Zn2+ storage process and improves the electrochemical performance.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3255
Author(s):  
Xingang Bai ◽  
Luyang Xing ◽  
Ning Liu ◽  
Nana Ma ◽  
Kexin Huang ◽  
...  

Humulus scandens was first adopted as a biomass precursor to prepare biochars by means of a facile molten salt method. The optimized biochar exhibits a high specific surface area of ~450 m2/g−1, a rich porous structure and abundant oxygen functional groups, which demonstrate excellent adsorption performance for heavy metal ions. The isotherm curves fit well with the Langmuir models, indicating that the process is governed by the chemical adsorption, and that the maximum adsorption capacity can reach 748 and 221 mg/g−1 for Pb2+ and Cu2+, respectively. In addition, the optimized biochar demonstrates good anti-interference ability and outstanding removal efficiency for Cu2+ and Pb2+ in simulated wastewater. The mechanism investigation and DFT calculation suggest that the oxygen functional groups play dominant roles in the adsorption process by enhancing the binding energy towards the heavy metal ions. Meanwhile, ion exchange also serves as the main reason for the effective removal.


Sign in / Sign up

Export Citation Format

Share Document