Effects of Yttria and Calcia Co-Doping on the Electrical Conductivity of Zirconia Ceramics

2007 ◽  
Vol 44 (12) ◽  
pp. 655-659 ◽  
Author(s):  
Jong-Sook Lee ◽  
Dong-Kyu Shin ◽  
Byung-Yun Choi ◽  
Jung-Kwang Jeon ◽  
Sung-Hwan Jin ◽  
...  
1985 ◽  
Vol 4 (4) ◽  
pp. 467-471 ◽  
Author(s):  
M. Kuwabara ◽  
T. Murakami ◽  
M. Ashizuka ◽  
Y. Kubota ◽  
T. Tsukidate

2017 ◽  
Vol 57 (4) ◽  
Author(s):  
Jorge Enrique Osorio-Fuente ◽  
Carlos Gómez-Yáñez ◽  
María De los Ángeles Hernández-Pérez ◽  
Mónica De la Luz Corea-Téllez

A mixture of ammonium peroxydisulfate and sodium hypochlorite (NaClO) (co-oxidating system) were used to obtain polyaniline (PANi) doped with HCl and camphorsulfonic acid (CSA) (co-doping). The effect of HCl/CSA ratio added during polymerization on structure, morphology and electrical conductivity of the conducting polymer was investigated. When NaClO is used, the polymerization rate is substantially increased and the morphology changes from micrometric granular to nanometric fibrillar. CSA was used as complementary dopant but also to improve the solubility of PANi in common solvents. However, results suggest that quinone-like heterocycles containing carbonyl radicals as well as phenazine-type aromatic rings might be impeding an efficient doping in detriment of the conductivity.


2007 ◽  
Vol 26-28 ◽  
pp. 773-776
Author(s):  
S. Yuhara ◽  
Yorinobu Takigawa ◽  
Tokuteru Uesugi ◽  
Kenji Higashi

Phase stability of cation co-doped zirconia ceramics is examined. As the result, in contrast to the result in small amount of single cation doped zirconia, phase stability of co-doped zirconia ceramics can not be simply explained from ionic radius and valency of dopant or from the change in axis ratio. We focus on oxygen vacancy concentration and binding energy between oxygen vacancy and doped cation. By estimating phase stability from these factors, it is found that concentration of oxygen vacancy and the binding energy between the dopant and the oxygen vacancy are important factors for understanding the phase stability of zirconia ceramics.


Author(s):  
Mi-Kyung Han ◽  
Yingshi Jin ◽  
Da-Hee Lee ◽  
Sung-Jin Kim

In order to understand the effect of Pb-CuI co-doping on the thermoelectric performance of Bi2Te3, n-type Bi2Te3 co-doped with x at% CuI and 1/2x at% Pb (x = 0, 0.01, 0.03, 0.05, 0.07, and 0.10) were prepared via high temperature solid state reaction and consolidated using spark plasma sintering. Electron and thermal transport properties, i.e., electrical conductivity, carrier concentration, Hall mobility, Seebeck coefficient, and thermal conductivity, of CuI-Pb co-doped Bi2Te3 were measured in the temperature range from 300 K to 523 K and compared to corresponding x% of CuI-doped Bi2Te3 and undoped Bi2Te3. The addition of a small amount of Pb significantly decreased the carrier concentration, which could be attributed to the holes from Pb atoms, thus the CuI-Pb co-doped samples show a lower electrical conductivity and a higher Seebeck coefficient compared to CuI-doped samples with similar x values. The incorporation of Pb into CuI-doped Bi2Te3 rarely changed the power factor because of the trade-off relationship between the electrical conductivity and the Seebeck coefficient. The total thermal conductivity(κtot) of co-doped samples (κtot ~1.4 W/m∙K at 300 K) is slightly lower than that of 1% CuI-doped Bi2Te3 (κtot~1.5 W/m∙K at 300 K) and undoped Bi2Te3 (κtot ~1.6 W/m∙K at 300 K) due to the alloy scattering. The 1% CuI-Pb co-doped Bi2Te3 sample shows the highest ZT value of 0.96 at 370 K. All data on electrical and thermal transport properties suggest that the thermoelectric properties of Bi2Te3 and its operating temperature can be controlled by co-doping.


2015 ◽  
Vol 819 ◽  
pp. 193-197 ◽  
Author(s):  
Arshad Hmood ◽  
Arej Kadhim ◽  
H.A. Hassan

In this paper we reported the electrical conductivity and thermoelectric characterization of silver (Ag) and antimony (Sb) co-doped lead telluride bulk materials, which have been synthesized using solid state microwave technique. The doping level has performed first-principle calculations for the AgPbmSbTem+2 (LAST-m) (m = 0, 2, 4, 6, 8 and 10) to clarify the effect of simultaneous doping of Ag and Sb on PbTe. The Hall effect and thermoelectric measurements have shown n-type conductivity in AgPbmSbTem+2 samples. The samples show large and negative values of the Seebeck coefficient and moderate electrical conductivity. The Seebeck coefficient increased with doping levels increases at m=0 to 10. The value of the Seebeck coefficient is −419.69 μVK−1 for AgPb8SbTe10 at 338 K. It has been found that AgPb8SbTe10 sample has a higher thermoelectric power factor 1.87 mW K-2 m-1 at 310 K.


1998 ◽  
Vol 111 (1-2) ◽  
pp. 161-169 ◽  
Author(s):  
Masanori Hirano ◽  
Shinzi Watanabe ◽  
Etsuro Kato ◽  
Yasunobu Mizutani ◽  
Masayuki Kawai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document