Electrical conductivity and stability of Gd-doped ceria/Y-doped zirconia ceramics and thin films

2004 ◽  
Vol 175 (1-4) ◽  
pp. 19-22 ◽  
Author(s):  
X ZHOU
2011 ◽  
Vol 196 (15) ◽  
pp. 6070-6078 ◽  
Author(s):  
Anja Bieberle-Hütter ◽  
Patrick Reinhard ◽  
Jennifer L.M. Rupp ◽  
Ludwig J. Gauckler

2007 ◽  
Vol 90 (26) ◽  
pp. 263108 ◽  
Author(s):  
Annamalai Karthikeyan ◽  
Masaru Tsuchiya ◽  
Chia-Lin Chang ◽  
Shriram Ramanathan

2008 ◽  
Vol 56 (4) ◽  
pp. 677-687 ◽  
Author(s):  
Ulrich P. Muecke ◽  
Silvio Graf ◽  
Urs Rhyner ◽  
Ludwig J. Gauckler

Author(s):  
Klaus-Ruediger Peters ◽  
Samuel A. Green

High magnification imaging of macromolecules on metal coated biological specimens is limited only by wet preparation procedures since recently obtained instrumental resolution allows visualization of topographic structures as smal l as 1-2 nm. Details of such dimensions may be visualized if continuous metal films with a thickness of 2 nm or less are applied. Such thin films give sufficient contrast in TEM as well as in SEM (SE-I image mode). The requisite increase in electrical conductivity for SEM of biological specimens is achieved through the use of ligand mediated wet osmiuum impregnation of the specimen before critical point (CP) drying. A commonly used ligand is thiocarbohvdrazide (TCH), first introduced to TEM for en block staining of lipids and glvcomacromolecules with osmium black. Now TCH is also used for SEM. However, after ligand mediated osinification nonspecific osmium black precipitates were often found obscuring surface details with large diffuse aggregates or with dense particular deposits, 2-20 nm in size. Thus, only low magnification work was considered possible after TCH appl ication.


2018 ◽  
Vol 1 (1) ◽  
pp. 26-31 ◽  
Author(s):  
B Babu ◽  
K Mohanraj ◽  
S Chandrasekar ◽  
N Senthil Kumar ◽  
B Mohanbabu

CdHgTe thin films were grown onto glass substrate via the Chemical bath deposition technique. XRD results indicate that a CdHgTe formed with a cubic polycrystalline structure. The crystallinity of CdHgTe thin films is gradually deteriorate with increasing the gamma irradiation. EDS spectrums confirms the presence of Cd, Hg and Te elements. DC electrical conductivity results depicted the conductivity of CdHgTe increase with increasing a gamma ray dosage


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 724
Author(s):  
Sara Massardo ◽  
Alessandro Cingolani ◽  
Cristina Artini

Rare earth-doped ceria thin films are currently thoroughly studied to be used in miniaturized solid oxide cells, memristive devices and gas sensors. The employment in such different application fields derives from the most remarkable property of this material, namely ionic conductivity, occurring through the mobility of oxygen ions above a certain threshold temperature. This feature is in turn limited by the association of defects, which hinders the movement of ions through the lattice. In addition to these issues, ionic conductivity in thin films is dominated by the presence of the film/substrate interface, where a strain can arise as a consequence of lattice mismatch. A tensile strain, in particular, when not released through the occurrence of dislocations, enhances ionic conduction through the reduction of activation energy. Within this complex framework, high pressure X-ray diffraction investigations performed on the bulk material are of great help in estimating the bulk modulus of the material, and hence its compressibility, namely its tolerance toward the application of a compressive/tensile stress. In this review, an overview is given about the correlation between structure and transport properties in rare earth-doped ceria films, and the role of high pressure X-ray diffraction studies in the selection of the most proper compositions for the design of thin films.


2021 ◽  
Vol 1758 (1) ◽  
pp. 012005
Author(s):  
G S Burkhanov ◽  
S A Lachenkov ◽  
M A Kononov ◽  
A U Bashlakov ◽  
D V Prosvirnin

2020 ◽  
Vol 317 ◽  
pp. 128037 ◽  
Author(s):  
Taro Ueda ◽  
Thomas Defferriere ◽  
Takeo Hyodo ◽  
Yasuhiro Shimizu ◽  
Harry L. Tuller

RSC Advances ◽  
2015 ◽  
Vol 5 (94) ◽  
pp. 76783-76787 ◽  
Author(s):  
H. L. Wang ◽  
X. K. Ning ◽  
Z. J. Wang

Au–LaNiO3 (Au–LNO) nanocomposite films with 3.84 at% Au were firstly fabricated by one-step chemical solution deposition (CSD), and their electrical properties were investigated.


Sign in / Sign up

Export Citation Format

Share Document