A Finite Element Model for Simulation of the Structural Behaviour of Steel Fibre Reinforced Concrete Ground Slabs

Author(s):  
M.B. Mehrabani ◽  
X. Zhou ◽  
H.-P. Chen ◽  
Z. Xiao
2017 ◽  
Vol 21 (8) ◽  
pp. 1234-1248 ◽  
Author(s):  
Shenchun Xu ◽  
Chengqing Wu ◽  
Zhongxian Liu ◽  
Jun Li

A finite element model is developed to investigate the behaviour of ultra-high-performance steel fibre–reinforced concrete columns under combined axial compression and horizontal monotonic push loading. The effects of steel fibre content, axial compression ratio, reinforcement ratio (or rebar ratio), stirrup ratio and shear span ratio on the structural behaviour of ultra-high-performance steel fibre–reinforced concrete columns are investigated in detail. The numerical model shows good agreement in bond–slip behaviour of specimens based on CEB model results and numerical results, and such behaviour should be taken into consideration in engineering practice. The results indicate that the developed finite element model could predict the structural behaviour and failure mode of ultra-high-performance steel fibre–reinforced concrete columns effectively. It is found that the reinforcement ratio, axial compression ratio, shear span ratio and volume fraction of steel fibre have a great influence on both the structural behaviour and failure modes of specimens.


2014 ◽  
Vol 553 ◽  
pp. 100-105
Author(s):  
Xiao Shan Lin ◽  
Yi Xia Zhang ◽  
Paul Jonathan Hazell

In this study, a finite element model is developed for simulation of the structural behaviour of steel-reinforced concrete panels under blast loading using LS-DYNA. Pure Lagrangian formulation is applied in the finite element analysis, and the strain rate effect is taken into account in the material models of both concrete and steel. The finite element model is validated by comparing the computed results with experimental test results from the literature. Structural behaviour of concrete panel with different parameters under blast loading is also investigated. Keywords: Blast resistance; Finite element model; Reinforced concrete panel; Strain rate effect


2016 ◽  
Vol 20 (1) ◽  
pp. 139-151
Author(s):  
Juechun Xu ◽  
Chengqing Wu ◽  
Jun Li ◽  
Jintao Cui

Ultra-high-performance fibre-reinforced concrete has exceptional mechanical properties including high compressive and tensile strength as well as high fracture energy. It has been proved to be much higher blast resistant than normal concrete. In this article, flexural behaviours of ultra-high-performance fibre-reinforced concrete columns were investigated through full-scale tests. Two 200 mm × 200 mm × 2500 mm columns with and without axial loading were investigated under three-point bending tests, and their load–displacement relationships were recorded and the moment curvatures were derived. The derived moment curvature relationships of ultra-high-performance fibre-reinforced concrete columns were then incorporated into a computationally efficient one-dimensional finite element model, which utilized Timoshenko beam theory, to determine flexural response of ultra-high-performance fibre-reinforced concrete columns under blast loading. After that, the one-dimensional finite element model was validated with the real blast testing data. The results show good correlation between the advanced finite element model and experimental results. The feasibility of utilizing the one-dimensional finite element model for simulating both high-strength reinforced concrete and ultra-high-performance fibre-reinforced concrete columns against blast loading conditions is confirmed.


2017 ◽  
Vol 12 (2) ◽  
pp. 82-87 ◽  
Author(s):  
Adas Meškėnas ◽  
Viktor Gribniak ◽  
Gintaris Kaklauskas ◽  
Aleksandr Sokolov ◽  
Eugenijus Gudonis ◽  
...  

Concrete is the most widely used material for bridge structures in Lithuania. A case study performed by the authors revealed that application of fibres might improve serviceability of such structures. However, adequacy of prediction of the post-cracking behaviour of steel fibre reinforced concrete might be insufficient. The latter issue is closely related to the assessment of the residual strength of steel fibre reinforced concrete. The residual strength, in most cases, is considered as a material property of the cracked concrete. However, in the prediction of the structural behaviour of the concrete members with bar reinforcement, a straightforward application of the residual strength values assessed by using standard techniques might lead to incorrect results. The present study deals with the post-cracking behaviour of structural elements made of concrete with aggregates and fibres provided by Lithuanian companies. Test results of three full-scale and sixteen standard steel fibre reinforced concrete beams with two different content of fibres (23.6 kg/m3 and 47.1 kg/m3) are presented. The full-scale beams were reinforced with high-grade steel bars. Effectiveness of the application of the minimum content of the fibres in combination with bar reinforcement was revealed experimentally.


Sign in / Sign up

Export Citation Format

Share Document