The Application of a Soil Structure Interaction Procedure to the Analysis and Design of Raft Foundations

Author(s):  
I.D. Lefas ◽  
V.N. Georgiannou ◽  
D.A. Shepherd
2016 ◽  
Vol 63 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Balázs Móczár ◽  
Zsuzsanna Polgár ◽  
András Mahler

AbstractDesign and modelling of raft foundations and selecting the value of coefficient of vertical subgrade reaction are still actively discussed topics in geotechnical and structural engineering. In everyday practice, soil–structure interaction is mostly taken into account by using the theory of ‘beam on elastic foundation’, in which the soil is substituted by a certain set of coefficients of subgrade reaction. In this study, finite element analysis of a building was performed using a geotechnical software (Plaxis 3D), which is capable of modelling the subsoil as a continuum, and a structural software (Axis VM), which uses the concept of ‘beam on elastic foundation’. The evaluation of the results and recommendations for everyday engineering practice are introduced in this paper.


Author(s):  
Steffen Leppla ◽  
Arnoldas Norkus

Roads and road infrastructure systems are designed to satisfy ultimate and serviceability conditions under long-term actions caused by transport loadings and environmental effects. Selected design solutions must be safe and rational in terms of construction and maintenance costs. In cases when weak or soft soil layers of natural soil profiles are shallow and/or the traffic loads are very large, the Combined Pile-Raft Foundation (CPRF) is the economical road and railway structure design solution. Application of CPRF is cheaper geotechnical solution comparing with soil change or usual piled foundation alternatives. The development of this system is based on the analysis of relevant mechanical properties of soil layers and the evaluation of the soil-structure interaction. The soil-structure interaction is of highest importance allowing proper evaluation of load bearing resistance and deformation transmitted by raft and piles to soil layers. The soil and foundation system usually is subjected by loadings, resulting elastic-plastic resistance range. Therefore, relevant nonlinear physical laws due to the stress levels are used. The paper purpose is summarizing the experience of application of Combined Pile-Raft Foundations used in road and railway construction and bridge engineering.


Chimneys are distinguished requirements for Power generation and other Manufacturing areas which are vital to be constructed vertically to discharge combustion gases and chemical waste gases to the environment. Due to the hasty growth of mechanization and escalating the requirement to control of Air pollution, the construction of tall Chimneys becomes a regular structure in contemporary circumstances. Tall chimney shells generally designed to resist vertical and lateral loads especially due to the effect of Wind and Earthquake. RCC Chimney shell will transfer these vertical and lateral loads to its foundation system. Soil Structure Interaction (SSI) is the response of soil which impacts the behavior of the structure or behavior of the structure which affects on response of soil. Soil Structure Interaction is essential for tall structures which especially resting on soft soil strata. This review work presents a widespread appraisal of the research presented in the area of RCC chimney and communicates most recent enlightenments and improvements happened in the analysis and design. This paper makes an attempt on focusing the modeling features of RCC chimneys which contains analysis, design aspects and several case studies, with the help of various software programs with the effects of lateral loads and soil structure interaction. The present review paper also corresponds to a complete anthology of the research accomplished on RCC chimney and will gives rationalized technical information for the researchers.


2017 ◽  
Vol 23 (4) ◽  
pp. 464-474
Author(s):  
Konuralp GİRGİN

In spread footings, the rotational spring constants, which represent the soil-structure interaction, play an important role in the structural analysis and design. To assign the behaviour of soil, which is generally represented via Winkler-type tensionless springs, necessitates time consuming iterative computing procedures in practice. In this study, a straightfor­ward approach is proposed for the soil-structure interaction of rigid spread footings especially subjected to excessive eccentric loading. By considering the uplift of footing, the rotational spring constants of those type footings under axial load and biaxial bending are easily attained through the proposed simplified formulations. Since these formulations enable manual calculation, iterative computer efforts are not required. The formulations under consideration can be applicable to sym­metric and non-symmetric rigid spread footings. The numerical results of this study are verified with SAP2000.


Author(s):  
Michael C. Costantino ◽  
Thomas W. Houston ◽  
Andrew S. Maham

Seismic analysis and design of high-hazard nuclear facilities requires evaluation of soil-structure interaction (SSI) effects on structure and soil response due to earthquake ground motions. The industry-wide methodology of computing SSI response of buildings is through linear SSI techniques using the computer code SASSI. Technical issues were identified by users and regulators (Ref. 1) resulting in the U.S. Department of Energy (DOE) commissioning a large scale, multi-year Validation and Verification (V&V) Project for SASSI (Ref. 2). The project was a highly peer reviewed process that included an esteemed Participatory Peer Review Team, DOE oversight, as well as regulatory and stakeholder input. The project goal was to develop benchmark SSI solutions for the range of SSI problems associated with high-hazard facilities within the DOE complex. As per industry software quality control requirements, an acceptance limit for the benchmark solutions must be provided to define the acceptable accuracy of the results produced by SASSI relative to the benchmark. In order to define this limit, variation in the solution of foundation impedance must be related to an expected level of accuracy in structural design quantities of interest (e.g., response spectra, base shear, etc.). Therefore, extensive parametric analyses were performed for coupled soil-structure systems having a broad range of SSI parameters defined by foundation size, soil properties, building stiffness and mass properties, building height, etc. Based on the results of the parametric analyses, ASCE 4 code guidance, and engineering judgment of CJC&A and the peer review team, an acceptable level of accuracy in computed foundation impedance was determined for SASSI solutions. This supported the successful qualification of SASSI for use in two large-scale DOE projects.


2015 ◽  
Vol 63 ◽  
pp. 121-134 ◽  
Author(s):  
F. Tradigo ◽  
F. Pisanò ◽  
C. di Prisco ◽  
A. Mussi

Structures are often constructed on layers of soil unless bedrock is very close to the ground surface. When the ground is stiff enough, the dynamic response of the structure will not be influenced significantly by the soil properties during the earthquake, and the structure can be analysed under the fixed base condition. When the structure is resting on a flexible medium, the dynamic response of the complete structure will be different from the fixed base condition, where the interaction between the soil and the structure has to be incorporate. This behavioural difference because of the phenomenon commonly referred to as Soil-Structure Interaction (SSI), which if not considered in analysis and design properly; the accuracy in assessing the structural safety, response for earthquake excitation could not be reliable solution. Hence evaluation of the site, specific effect of soil stiffness on structure becomes important to understand behaviour of structure. Flexibility of soil increases natural period of structure, which basically turn changes the seismic response of structure. The interaction among structure, their foundation and soil media below foundation alter the actual behaviour of structure. Here G+25 storey building is modelled and analysed, employing Finite Element Method adopting Commercial code SAP2000 V19 under fixed base (no soil-structure interaction) and flexible base considering soil-structure interaction. An attempt has been made to evaluate the effect of soil structure interaction of super structure by considering the systematic parameters like time period, lateral displacement, storey drift, bending moment in dual global structural axis i.e., X-X and Y-Y direction.


Sign in / Sign up

Export Citation Format

Share Document