Free Vibration Analysis of Nanocomposite Plates Reinforced by Graded Carbon Nanotubes Based on First-Order Shear Deformation Plate Theory

2013 ◽  
Vol 5 (1) ◽  
pp. 90-112 ◽  
Author(s):  
S. Jafari Mehrabadi ◽  
B. Sobhaniaragh ◽  
V. Pourdonya

AbstractBased on the Mindlin’s first-order shear deformation plate theory this paper focuses on the free vibration behavior of functionally graded nanocomposite plates reinforced by aligned and straight single-walled carbon nanotubes (SWCNTs). The material properties of simply supported functionally graded carbon nanotube-reinforced (FGCNTR) plates are assumed to be graded in the thickness direction. The effective material properties at a point are estimated by either the Eshelby-Mori-Tanaka approach or the extended rule of mixture. Two types of symmetric carbon nanotubes (CNTs) volume fraction profiles are presented in this paper. The equations of motion and related boundary conditions are derived using the Hamilton’s principle. A semi-analytical solution composed of generalized differential quadrature (GDQ) method, as an efficient and accurate numerical method, and series solution is adopted to solve the equations of motions. The primary contribution of the present work is to provide a comparative study of the natural frequencies obtained by extended rule of mixture and Eshelby-Mori-Tanaka method. The detailed parametric studies are carried out to study the influences various types of the CNTs volume fraction profiles, geometrical parameters and CNTs volume fraction on the free vibration characteristics of FGCNTR plates. The results reveal that the prediction methods of effective material properties have an insignificant influence of the variation of the frequency parameters with the plate aspect ratio and the CNTs volume fraction.

2004 ◽  
Vol 261-263 ◽  
pp. 609-614 ◽  
Author(s):  
L.S. Ma ◽  
Tie Jun Wang

Based on the first-order shear deformation theory of plate, governing equations for the axisymmetric buckling of functionally graded circular/annular plates are derived. The coupled deflections and rotations in the pre-buckling state of the plates are neglected in analysis. The material properties vary continuously through the thickness of the plate, and obey a power law distribution of the volume fraction of the constituents. The resulting differential equations are numerically solved by using a shooting method. The critical buckling loads of circular and annular plates are obtained, which are compared with those obtained from the classical plate theory. Effects of material properties, ratio of inter to outer radius, ratio of plate thickness to outer radius, and boundary conditions on the buckling behavior of FGM plates are discussed.


2019 ◽  
Vol 69 (4) ◽  
pp. 9-24 ◽  
Author(s):  
Chikh Abdelbaki

AbstractThis paper shows an analysis of the free vibration of functionally graded simply supported nanoplate. The nonlocal four variables shear deformation plate theory is used to predict the free vibration frequencies of functionally graded nanoplate simply supported using non-local elasticity theory with the introduction of small-scale effects. The effect of the material properties, thickness-length ratio, aspect ratio, the exponent of the power law, the vibration mode is presented, the current solutions are compared to those obtained by other researchers. Equilibrium equations are obtained using the virtual displacements principle. P-FGM Power law is used to have a distribution of material properties that vary across the thickness. The results are in good agreement with those of the literature.


2018 ◽  
Vol 18 (04) ◽  
pp. 1850049 ◽  
Author(s):  
Smita Parida ◽  
Sukesh Chandra Mohanty

This paper deals with the free vibration and buckling analysis of functionally graded material (FGM) plates, resting on the Winkler–Pasternak elastic foundation. The higher order shear deformation plate theory (HSPT) is adopted for the realistic variation of transverse displacement through the thickness, using the power law distribution to describe the variation of the material properties. Both the effects of shear deformation and rotary inertia are considered. In the present model, the plate is discretised into [Formula: see text] eight noded serendipity quadratic elements with seven nodal degrees of freedom (DOFs). The validation study is carried out by comparing the calculated values with those given in the literature. The effects of various parameters like the Winkler and Pasternak modulus coefficients, volume fraction index, aspect ratio, thickness ratio and different boundary conditions on the behaviour of the FGM plates are studied.


2019 ◽  
Vol 16 (04) ◽  
pp. 1850102 ◽  
Author(s):  
T. Nguyen-Quoc ◽  
S. Nguyen-Hoai ◽  
D. Mai-Duc

In this paper, an edge-based smoothed stabilized discrete shear gap method (ES-DSG) is integrated with the C0-type high-order shear deformation plate theory (C0-HSDT) for free vibration and static analyses of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates. The material properties of FG-CNTRC are assumed to be graded through the thickness direction according to several distributions of the volume fraction of carbon nanotubes (CNTs). The stiffness formulation of the ES-DSG based on C0-HSDT is performed by using the strain smoothing technique over the smoothing domains associated with edges of elements. This hence does not require shear correction factors. The accuracy and reliability of the proposed method are confirmed in several numerical examples.


2020 ◽  
Vol 26 (23-24) ◽  
pp. 2193-2209
Author(s):  
Ehsan Ansari ◽  
AliReza Setoodeh

This article presents free vibration and buckling analyses of functionally graded blades with variable thickness subjected to mechanical and thermal loading using isogeometric analysis as a powerful numerical method. The proposed method is based on deployment of Hamilton’s principle to the two-dimensional kinematics of blades. The governing equations are derived in the context of a modified form of higher order shear deformation plate theory that merely needs C0-continuity (C0-higher order shear deformation plate theory). Without the necessity of defining a shear correction factor, the theory can accurately predict the solution for different thickness-to-length ratios. The numerical predictions for the buckling loads and natural frequencies are successfully compared with the available solutions in the published articles and in the lack of relevant results, finite element analysis using ANSYS is used for verification of the model. The effects of variable thickness and aspect ratio on the natural frequencies and mode shapes known as the frequencies loci veering phenomena are assessed for the first time, which is an important design factor for the blades. The proposed method uses non-uniform rational B-spline element, which is able to approximate linear and nonlinear thickness distribution and the couple modes with an excellent numerical consistency. The influences of aspect ratio, thickness variation, taper ratio, volume fraction exponent, and boundary conditions on the free vibration and buckling of variable-thickness functionally graded blades are also examined.


2015 ◽  
Vol 37 (3) ◽  
pp. 187-204
Author(s):  
Dao Van Dung ◽  
Nguyen Thi Nga

In this paper, the buckling and post-buckling behaviors of eccentrically  stiffened functionally graded material (ES-FGM) plates on elastic  foundations subjected to in-plane compressive loads or thermal loads are  investigated by an analytical solution. The novelty of this work is that FGM  plates are reinforced by FGM stiffeners and the temperature, stiffener,  foundation are considered. The first-order shear deformation  plate theory is used. The thermal elements of plate and stiffeners in  fundamental equations are introduced. Theoretical formulations based on the  smeared stiffeners technique and the first-order shear deformation plate  theory, are derived. The analytical expressions to determine the static  critical buckling load and post-buckling load-deflection curves are  obtained.


2016 ◽  
Vol 7 ◽  
pp. 511-523 ◽  
Author(s):  
Mostafa Mirzaei ◽  
Yaser Kiani

During the past five years, it has been shown that carbon nanotubes act as an exceptional reinforcement for composites. For this reason, a large number of investigations have been devoted to analysis of fundamental, structural behavior of solid structures made of carbon-nanotube-reinforced composites (CNTRC). The present research, as an extension of the available works on the vibration analysis of CNTRC structures, examines the free vibration characteristics of plates containing a cutout that are reinforced with uniform or nonuniform distribution of carbon nanotubes. The first-order shear deformation plate theory is used to estimate the kinematics of the plate. The solution method is based on the Ritz method with Chebyshev basis polynomials. Such a solution method is suitable for arbitrary in-plane and out-of-plane boundary conditions of the plate. It is shown that through a functionally graded distribution of carbon nanotubes across the thickness of the plate, the fundamental frequency of a rectangular plate with or without a cutout may be enhanced. Furthermore, the frequencies are highly dependent on the volume fraction of carbon nanotubes and may be increased upon using more carbon nanotubes as reinforcement.


Sign in / Sign up

Export Citation Format

Share Document