Constrained Large-Eddy Simulation of Compressible Flow Past a Circular Cylinder

2014 ◽  
Vol 15 (2) ◽  
pp. 388-421 ◽  
Author(s):  
Renkai Hong ◽  
Zhenhua Xia ◽  
Yipeng Shi ◽  
Zuoli Xiao ◽  
Shiyi Chen

AbstractCompressible flow past a circular cylinder at an inflow Reynolds number of 2x105is numerically investigated by using a constrained large-eddy simulation (CLES) technique. Numerical simulation with adiabatic wall boundary condition and at a free-stream Mach number of 0.75 is conducted to validate and verify the performance of the present CLES method in predicting separated flows. Some typical and characteristic physical quantities, such as the drag coefficient, the root-mean-square lift fluctuations, the Strouhal number, the pressure and skin friction distributions around the cylinder,etc.are calculated and compared with previously reported experimental data, finer-grid large-eddy simulation (LES) data and those obtained in the present LES and detached-eddy simulation (DES) on coarse grids. It turns out that CLES is superior to DES in predicting such separated flow and that CLES can mimic the intricate shock wave dynamics quite well. Then, the effects of Mach number on the flow patterns and parameters such as the pressure, skin friction and drag coefficients, and the cylinder surface temperature are studied, with Mach number varying from 0.1 to 0.95. Non-monotonic behaviors of the pressure and skin friction distributions are observed with increasing Mach number and the minimum mean separation angle occurs at a subcritical Mach number of between 0.3 and 0.5. Additionally, the wall temperature effects on the thermodynamic and aerodynamic quantities are explored in a series of simulations using isothermal wall boundary conditions at three different wall temperatures. It is found that the flow separates earlier from the cylinder surface with a longer recirculation length in the wake and a higher pressure coefficient at the rear stagnation point for higher wall temperature. Moreover, the influences of different thermal wall boundary conditions on the flow field are gradually magnified from the front stagnation point to the rear stagnation point. Moreover, the influences of different thermal wall boundary conditions on the flow field are graduallymagnified from the front stagnation point to the rear stagnation point. It is inferred that the CLES approach in its current version is a useful and effective tool for simulating wall-bounded compressible turbulent flows with massive separations.

Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 112
Author(s):  
H. Jane Bae ◽  
Adrián Lozano-Durán

We studied the effect of wall boundary conditions on the statistics in a wall-modeled large-eddy simulation (WMLES) of turbulent channel flows. Three different forms of the boundary condition based on the mean stress-balance equations were used to supply the correct mean wall shear stress for a wide range of Reynolds numbers and grid resolutions applicable to WMLES. In addition to the widely used Neumann boundary condition at the wall, we considered a case with a no-slip condition at the wall in which the wall stress was imposed by adjusting the value of the eddy viscosity at the wall. The results showed that the type of boundary condition utilized had an impact on the statistics (e.g., mean velocity profile and turbulence intensities) in the vicinity of the wall, especially at the first off-wall grid point. Augmenting the eddy viscosity at the wall resulted in improved predictions of statistics in the near-wall region, which should allow the use of information from the first off-wall grid point for wall models without additional spatial or temporal filtering. This boundary condition is easy to implement and provides a simple solution to the well-known log-layer mismatch in WMLES.


Fluids ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 246
Author(s):  
Rozie Zangeneh

The Wall-modeled Large-eddy Simulation (WMLES) methods are commonly accompanied with an underprediction of the skin friction and a deviation of the velocity profile. The widely-used Improved Delayed Detached Eddy Simulation (IDDES) method is suggested to improve the prediction of the mean skin friction when it acts as WMLES, as claimed by the original authors. However, the model tested only on flow configurations with no heat transfer. This study takes a systematic approach to assess the performance of the IDDES model for separated flows with heat transfer. Separated flows on an isothermal wall and walls with mild and intense heat fluxes are considered. For the case of the wall with heat flux, the skin friction and Stanton number are underpredicted by the IDDES model however, the underprediction is less significant for the isothermal wall case. The simulations of the cases with intense wall heat transfer reveal an interesting dependence on the heat flux level supplied; as the heat flux increases, the IDDES model declines to predict the accurate skin friction.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Puxuan Li ◽  
Steve J. Eckels ◽  
Garrett W. Mann ◽  
Ning Zhang

The setup of inlet conditions for a large eddy simulation (LES) is a complex and important problem. Normally, there are two methods to generate the inlet conditions for LES, i.e., synthesized turbulence methods and precursor simulation methods. This study presents a new method for determining inlet boundary conditions of LES using particle image velocimetry (PIV). LES shows sensitivity to inlet boundary conditions in the developing region, and this effect can even extend into the fully developed region of the flow. Two kinds of boundary conditions generated from PIV data, i.e., steady spatial distributed inlet (SSDI) and unsteady spatial distributed inlet (USDI), are studied. PIV provides valuable field measurement, but special care is needed to estimate turbulent kinetic energy and turbulent dissipation rate for SSDI. Correlation coefficients are used to analyze the autocorrelation of the PIV data. Different boundary conditions have different influences on LES, and their advantages and disadvantages for turbulence prediction and static pressure prediction are discussed in the paper. Two kinds of LES with different subgrid turbulence models are evaluated: namely dynamic Smagorinsky–Lilly model (Lilly model) and wall modeled large eddy simulation (WMLES model). The performances of these models for flow prediction in a square duct are presented. Furthermore, the LES results are compared with PIV measurement results and Reynolds-stress model (RSM) results at a downstream location for validation.


2001 ◽  
Vol 446 ◽  
pp. 309-320 ◽  
Author(s):  
IVAN MARUSIC ◽  
GARY J. KUNKEL ◽  
FERNANDO PORTÉ-AGEL

An experimental investigation was conducted to study the wall boundary condition for large-eddy simulation (LES) of a turbulent boundary layer at Rθ = 3500. Most boundary condition formulations for LES require the specification of the instantaneous filtered wall shear stress field based upon the filtered velocity field at the closest grid point above the wall. Three conventional boundary conditions are tested using simultaneously obtained filtered wall shear stress and streamwise and wall-normal velocities, at locations nominally within the log region of the flow. This was done using arrays of hot-film sensors and X-wire probes. The results indicate that models based on streamwise velocity perform better than those using the wall-normal velocity, but overall significant discrepancies were found for all three models. A new model is proposed which gives better agreement with the shear stress measured at the wall. The new model is also based on the streamwise velocity but is formulated so as to be consistent with ‘outer-flow’ scaling similarity of the streamwise velocity spectra. It is therefore expected to be more generally applicable over a larger range of Reynolds numbers at any first-grid position within the log region of the boundary layer.


Sign in / Sign up

Export Citation Format

Share Document