scholarly journals Multi-Mesh-Scale Approximation of Thin Geophysical Mass Flows on Complex Topographies

2021 ◽  
Vol 29 (1) ◽  
pp. 148-185
Author(s):  
Yih-Chin Tai
Author(s):  
E. Bruce Pitman ◽  
Long Le

Geophysical mass flows—debris flows, avalanches, landslides—can contain O (10 6 –10 10 ) m 3 or more of material, often a mixture of soil and rocks with a significant quantity of interstitial fluid. These flows can be tens of meters in depth and hundreds of meters in length. The range of scales and the rheology of this mixture presents significant modelling and computational challenges. This paper describes a depth-averaged ‘thin layer’ model of geophysical mass flows containing a mixture of solid material and fluid. The model is derived from a ‘two-phase’ or ‘two-fluid’ system of equations commonly used in engineering research. Phenomenological modelling and depth averaging combine to yield a tractable set of equations, a hyperbolic system that describes the motion of the two constituent phases. If the fluid inertia is small, a reduced model system that is easier to solve may be derived.


2016 ◽  
Author(s):  
Martin Mergili ◽  
Matthias Benedikt ◽  
Julia Krenn ◽  
Jan-Thomas Fischer ◽  
Shiva P Pudasaini

We present two GIS model applications for simulating the propagation of rapid geophysical mass flows: r.avaflow employs an advanced physically-based two phase flow model intended for in-detail case studies, r.randomwalk a conceptual model suitable for studies at various scales. Both tools are implemented in open source software environments serving for the needs of both research and practice. They offer a range of visualization, validation, parameter sensitivity analysis and parameter optimization functions. Some of the key functionalities of both tools are demonstrated for the Acheron rock avalanche in New Zealand.


2015 ◽  
Vol 3 (1) ◽  
pp. 562-585
Author(s):  
Asif Mahmood ◽  
Robert L. Wolpert ◽  
E. Bruce Pitman

2016 ◽  
Author(s):  
Martin Mergili ◽  
Matthias Benedikt ◽  
Julia Krenn ◽  
Jan-Thomas Fischer ◽  
Shiva P Pudasaini

We present two GIS model applications for simulating the propagation of rapid geophysical mass flows: r.avaflow employs an advanced physically-based two phase flow model intended for in-detail case studies, r.randomwalk a conceptual model suitable for studies at various scales. Both tools are implemented in open source software environments serving for the needs of both research and practice. They offer a range of visualization, validation, parameter sensitivity analysis and parameter optimization functions. Some of the key functionalities of both tools are demonstrated for the Acheron rock avalanche in New Zealand.


2015 ◽  
Vol 3 (6) ◽  
pp. 3789-3822 ◽  
Author(s):  
G. Córdoba ◽  
M. F. Sheridan ◽  
E. B. Pitman

Abstract. Debris flows, avalanches, landslides, and other geophysical mass flows can contain O(106–1010) m3 or more of material. These flows commonly consist of mixture of soil and rocks with a significant quantity of interstitial fluid. They can be tens of meters deep, and their runouts can extend many kilometers. The complicated rheology of such a mixture challenges every constitutive model that can reasonably be applied; the range of length and timescales involved in such mass flows challenges the computational capabilities of existing systems.This paper extends recent efforts to develop a depth averaged "thin layer" model for geophysical mass flows that contain a mixture of solid material and fluid. Concepts from the engineering community are integrated with phenomenological findings in geo-science, resulting in a theory that accounts for the principal solid and fluid forces as well as interactions between the phases, across a wide range of solid volume fraction. A principal contribution here is to present drag and phase interaction terms that comport with the literature in geo-sciences. The program predicts the evolution of the concentration and dynamic pressure. The theory is validated with with data from one dimensional dam break solutions and it is verified with data from artificial channel experiments.


2016 ◽  
Author(s):  
Martin Mergili ◽  
Matthias Benedikt ◽  
Julia Krenn ◽  
Jan-Thomas Fischer ◽  
Shiva P Pudasaini

We present two GIS model applications for simulating the propagation of rapid geophysical mass flows: r.avaflow employs an advanced physically-based two phase flow model intended for in-detail case studies, r.randomwalk a conceptual model suitable for studies at various scales. Both tools are implemented in open source software environments serving for the needs of both research and practice. They offer a range of visualization, validation, parameter sensitivity analysis and parameter optimization functions. Some of the key functionalities of both tools are demonstrated for the Acheron rock avalanche in New Zealand.


2012 ◽  
Vol 117 (F1) ◽  
pp. n/a-n/a ◽  
Author(s):  
C. G. Johnson ◽  
B. P. Kokelaar ◽  
R. M. Iverson ◽  
M. Logan ◽  
R. G. LaHusen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document