Can the fluorescence quantum yield be enhanced by introducing the benzene ring to the blue fluorescent protein chromophore?

2018 ◽  
Vol 9 (3) ◽  
pp. 42-45
Author(s):  
Bing Liu
1998 ◽  
Vol 237 (1-2) ◽  
pp. 183-193 ◽  
Author(s):  
Andreas D Kummer ◽  
Christian Kompa ◽  
Harald Lossau ◽  
Florian Pöllinger-Dammer ◽  
Maria E Michel-Beyerle ◽  
...  

2018 ◽  
Vol 19 (8) ◽  
pp. 2253 ◽  
Author(s):  
Xian-Jun Wu ◽  
Hong Yang ◽  
Yi Sheng ◽  
Yong-Li Zhu ◽  
Ping-Ping Li

Cyanobacteriochromes (CBCRs) are biliproteins for photoreception that are present in cyanobacteria. These proteins possess one or more unique cGMP-specific phosphodiesterase/adenylate cyclase/FhlA (GAF) domains that can covalently bind the linear tetrapyrrole (bilin). Light absorption triggers the photoisomerization of bilin between the 15Z and 15E photostates. The 15E photoproduct of some CBCR GAF domains can revert to the stable 15Z state in the absence of light. In some cases, this property makes these domains function as sensors of light intensity or as red/dark optogenetic switches. However, there have been few reports regarding the applicability of these fluorescent properties. Here, we report a red/green cyanobacteriochrome GAF domain from Spirulina subsalsa, designated SPI1085g3, which exhibited photoconversion from the red-absorbing dark state (Pr, λmax = 642 nm) to the orange-absorbing photoproduct state (Po, λmax = 590 nm), and exhibited moderate dark reversion (t1/2 = 3.3 min) from the Po state to the Pr state. The SPI1085g3 Pr state exhibited intense red fluorescence (λmax = 662 nm), with a quantum yield of 0.14. The fluorescence was switched off by red light irradiation and increased in the dark. Replacement of Cys448 of SPI1085g3 with Ser resulted in a slightly improved fluorescence quantum yield and nearly 13-fold faster dark reversion (t1/2 = 15.2 s) than that of the wild type. This novel red/dark-switchable fluorescent biliprotein expands the present repertoire and diversity of photoswitchable fluorescent protein candidates.


2021 ◽  
Vol 2 (18) ◽  
pp. 6083-6093
Author(s):  
Yuto Miyake ◽  
Goichiro Seo ◽  
Kotaro Matsuhashi ◽  
Noriyuki Takada ◽  
Kaname Kanai

Melem tetramer, the newly synthesized carbon nitride compound is composed of oligomers with four melem units, is stable in air, and has improved optical properties compared to melon.


Nanoscale ◽  
2021 ◽  
Author(s):  
Parinaz Fathi ◽  
Ayman Roslend ◽  
Kritika Mehta ◽  
Parikshit Moitra ◽  
Kai Zhang ◽  
...  

Increasing the fluorescence quantum yield of fluorophores is of great interest for in vitro and in vivo biomedical imaging applications. At the same time, photobleaching and photodegradation resulting from continuous...


Author(s):  
I. Rückert ◽  
A. Hebecker ◽  
A.B.J. Parusel ◽  
K.A. Zachariasse

With 3,5-dimethyl-4-(methylamino)benzonitrile (MHD) in n-hexane and n-hexadecane at 25°C, relatively small values are obtained for the fluorescence quantum yield Φ


2021 ◽  
pp. 1-10
Author(s):  
Ibrahim Erden ◽  
Betül Karadoğan ◽  
Fatma Aytan Kılıçarslan ◽  
Göknur Yaşa Atmaca ◽  
Ali Erdoğmuş

This work describes the synthesis, spectral and fluorescence properties of bis 4-(4-formyl-2,6-dimethoxyphenoxy) substituted zinc (ZnPc) and magnesium (MgPc) phthalocyanines. The new compounds have been characterized by elemental analysis, UV-Vis, FT-IR, 1H-NMR and mass spectra. Afterward, the effects of including metal ion on the photophysicochemical properties of the complexes were studied in biocompatible solvent DMSO to analyze their potential to use as a photosensitizer in photodynamic therapy (PDT). The fluorescence and singlet oxygen quantum yields were calculated as 0.04–0.15 and 0.70–0.52 for ZnPc and MgPc, respectively. According to the results, MgPc has higher fluorescence quantum yield than ZnPc, while ZnPc has higher singlet oxygen quantum yield than MgPc. The results show that the synthesized complexes can have therapeutic outcomes for cancer treatment.


2009 ◽  
Vol 1176 ◽  
Author(s):  
Masato Uehara ◽  
Kosuke Watanabe ◽  
Yasuyuki Tajiri ◽  
Hiroyuki Nakamura ◽  
Hideaki Maeda

AbstractCu-In-S nanocrystals were developed as a low toxic fluorescent. The stoichiometric CuInS2 nanocrystals were synthesized facilely by heating a solution of metal complexes. The fluorescence would be originated from the crystal defect. We intentionally introduced the crystal defects related to Cu deficiency in nanocrystal with the prospect that the fluorescence intensity would be increased. The nanocrystals have many defects without phase separation as observed in bulk material. Consequently, the fluorescence quantum yield achieved to c.a. 6%. Moreover, the fluorescence quantum yield was increased up to 15% by the ZnS-coating.


Sign in / Sign up

Export Citation Format

Share Document