scholarly journals After the Storm: Fate and leaching of particulate nitrogen (PN) in the fluvial network and the influence of watershed sources and moisture conditions

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3182
Author(s):  
Chelsea Krieg ◽  
Erin Johnson ◽  
Erin Peck ◽  
Jinjun Kan ◽  
Shreeram Inamdar

Large storms can erode, transport, and deposit substantial amounts of particulate nitrogen (PN) in the fluvial network. The fate of this input and its consequence for water quality is poorly understood. This study investigated the transformation and leaching of PN using a 56-day incubation experiment with five PN sources: forest floor humus, upland mineral A horizon, stream bank, storm deposits, and stream bed. Experiments were subjected to two moisture regimes: continuously moist and dry–wet cycles. Sediment and porewater samples were collected through the incubation and analyzed for N and C species, as well as the quantification of nitrifying and denitrifying genes (amoA, nirS, nirK). C- and N-rich watershed sources experienced decomposition, mineralization, and nitrification and released large amounts of dissolved N, but the amount of N released varied depending on the PN source and moisture regime. Drying and rewetting stimulated nitrification and suppressed denitrification in most PN sources. Storm deposits released large amounts of porewater N regardless of the moisture conditions, indicating that they could readily act as N sources under a variety of conditions. The inputs, processing, and leaching of large, storm-driven PN inputs become increasingly important as the frequency and intensity of large storms is predicted to increase with global climate change.


A study review of aging polymer composite materials (PCM) under different heat-moisture conditions or water exposure with the sequential or parallel influence of static or cyclic loads in laboratory conditions is presented. The influence of tension and bending loads is compared. Conditions of the different load influence on parameters of carbon-reinforced plastics and glass-reinforced plastics are discussed. Equipment and units for climatic tests of PCM under loading are described. Simulation examples of indices of mechanical properties of PCM under the influence of environment and loads are shown.


A study review of aging polymer composite materials (PCM) under different heat-moisture conditions or water exposure with the sequential or parallel influence of static or cyclic loads in laboratory conditions is presented. The influence of tension and bending loads is compared. Conditions of the different load influence on parameters of carbon-reinforced plastics and glass-reinforced plastics are discussed. Equipment and units for climatic tests of PCM under loading are described. Simulation examples of indices of mechanical properties of PCM under the influence of environment and loads are shown.


HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 599E-600
Author(s):  
Regina P. Bracy ◽  
Richard L. Parish

Improved stand establishment of direct-seeded crops has usually involved seed treatment and/or seed covers. Planters have been evaluated for seed/plant spacing uniformity, singulation, furrow openers, and presswheel design; however, effects of presswheels and seed coverers on plant establishment have not been widely investigated. Five experiments were conducted in a fine sandy loam soil to determine effect of presswheels and seed coverers on emergence of direct-seeded cabbage and mustard. Seed were planted with Stanhay 870 seeder equipped with one of four presswheels and seed coverers. Presswheels included smooth, mesh, concave split, and flat split types. Seed coverers included standard drag, light drag, paired knives, and no coverer. Soil moisture at planting ranged from 8% to 19% in the top 5 cm of bed. Differences in plant counts taken 2 weeks after planting were minimal with any presswheel or seed coverer. Visual observation indicated the seed furrow was more completely closed with the knife coverer in high soil moisture conditions. All tests received at least 14 mm of precipitation within 6 days from planting, which may account for lack of differences in plant emergence.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 491a-491
Author(s):  
James T. Cole ◽  
Janet C. Cole

An experiment was conducted to evaluate the performance of five ornamental grass species under reduced moisture. This experiment was conducted in the greenhouse with three water treatments for each species: 1) Well-watered plants were irrigated daily throughout the experiment, 2) acclimated-plants were exposed to four drought cycles prior to a final drought period in which measurements were taken, and 3) non-acclimated plants received daily irrigation until undergoing a drought cycle in which measurements were taken. A drought cycle was defined as the time from irrigation until Time Domain Reflectometry (TDR) measured 0 (zero). Preliminary observations determined the plants to be under severe stress, but capable of recovering at TDR measurements of 0. All plants were established from tillers of a single parent for each species. Two plants of each species for the three treatments were established in five blocks. Leaf water potential, osmotic potential, transpiration, stomatal resistance, and relative water content were measured during the drought cycle. At the end of the experiment the leaf area and root and shoot dry weights were determined, root to shoot ratio and leaf area ratio were calculated, and the plants were analyzed for macronutrient and micronutrient contents.


2018 ◽  
Author(s):  
Alison Anders ◽  
◽  
Jingtao Lai ◽  
Cecilia Cullen ◽  
Peter L. Moore ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document