scholarly journals A Note on Magnetic Properties of Volcanic Rocks Collected from King George Island, Antarctic Peninsula

2002 ◽  
Vol 24 (3) ◽  
pp. 313-318
Author(s):  
Minoru Funaki ◽  
Tomoko Ogishima
Polar Record ◽  
2018 ◽  
Vol 54 (2) ◽  
pp. 158-175 ◽  
Author(s):  
Priscila Kienteca Lange ◽  
Ryszard Ligowski ◽  
Denise Rivera Tenenbaum

ABSTRACTConsidering that phytoplankton assemblages are good bioindicators of environmental conditions, the sensitivity of the Western Antarctic Peninsula (WAP) to climate change, and the importance of some areas of its islands as Antarctic Specially Managed Areas, this work assembles published datasets on phytoplankton biodiversity and ecology in confined coastal areas (embayments) of King George Island, WAP. Over 33 years (1980–2013), 415 species from 122 genera have been identified to species level, being mostly diatoms (371 species), with 10 new species described with local material (6 diatoms, 4 cyanobacteria). The importance of diatoms was indicated by the frequent occurrence of Corethron pennatum, Pseudogomphonema kamtshaticum, and abundant benthic genera in the plankton (e.g. Navicula, Cocconeis). The increased contribution of dinoflagellates after 2010 suggests marked changes in the water column. Early-summer blooms differ between the bays' eastern and western shores, with terrestrial melting and wind-driven upwelling inducing the dominance of benthic species at eastern shores, whereas planktonic diatoms (Thalassiosira, Pseudo-nizschia, and Chaetoceros) are most abundant along western shores and central areas. The importance of an accurate identification of organisms that are becoming key ecological components of the region is discussed, as recent changes in the microflora may affect the entire marine food web.


2018 ◽  
Vol 36 (1) ◽  
pp. 253-264 ◽  
Author(s):  
Gabriel Augusto Giongo ◽  
José Valentin Bageston ◽  
Paulo Prado Batista ◽  
Cristiano Max Wrasse ◽  
Gabriela Dornelles Bittencourt ◽  
...  

Abstract. The main goals of this work are to characterize and investigate the potential wave sources of four mesospheric fronts identified in the hydroxyl near-infrared (OH-NIR) airglow images, obtained with an all-sky airglow imager installed at Comandante Ferraz Antarctic Station (EACF, as per its Portuguese acronym) located on King George Island in the Antarctic Peninsula. We identified and analyzed four mesospheric fronts in 2011 over King George Island. In addition, we investigate the atmospheric background environment between 80 and 100 km altitude and discuss the ducts and propagation conditions for these waves. For that, we used wind data obtained from a meteor radar operated at EACF and temperature data obtained from the TIMED/SABER satellite. The vertical wavenumber squared, m2, was calculated for each of the four waves. Even though no clearly defined duct (indicated by positive values of m2 sandwiched between layers above and below with m2  < 0) was found in any of the events, favorable propagation conditions for horizontal propagation of the fronts were found in three cases. In the fourth case, the wave front did not find any duct support and it appeared to dissipate near the zenith, transferring energy and momentum to the medium and, consequently, accelerating the wind in the wave propagation direction (near to south) above the OH peak (88–92 km). The likely wave sources for these four cases were investigated by using meteorological satellite images and in two cases we could find that strong instabilities were potential sources, i.e., a cyclonic activity and a large convective cloud cell. In the other two cases it was not possible to associate troposphere sources as potential candidates for the generation of such wave fronts observed in the mesosphere and secondary wave sources were attributed to these cases. Keywords. Atmospheric composition and structure (airglow and aurora) – meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides)


2021 ◽  
pp. M55-2018-68 ◽  
Author(s):  
Philip T. Leat ◽  
Teal R. Riley

AbstractThe Antarctic Peninsula contains a record of continental-margin volcanism extending from Jurassic to Recent times. Subduction of the Pacific oceanic lithosphere beneath the continental margin developed after Late Jurassic volcanism in Alexander Island that was related to extension of the continental margin. Mesozoic ocean-floor basalts emplaced within the Alexander Island accretionary complex have compositions derived from Pacific mantle. The Antarctic Peninsula volcanic arc was active from about Early Cretaceous times until the Early Miocene. It was affected by hydrothermal alteration, and by regional and contact metamorphism generally of zeolite to prehnite–pumpellyite facies. Distinct geochemical groups recognized within the volcanic rocks suggest varied magma generation processes related to changes in subduction dynamics. The four groups are: calc-alkaline, high-Mg andesitic, adakitic and high-Zr, the last two being described in this arc for the first time. The dominant calc-alkaline group ranges from primitive mafic magmas to rhyolite, and from low- to high-K in composition, and was generated from a mantle wedge with variable depletion. The high-Mg and adakitic rocks indicate periods of melting of the subducting slab and variable equilibration of the melts with mantle. The high-Zr group is interpreted as peralkaline and may have been related to extension of the arc.


2021 ◽  
pp. M56-2019-44
Author(s):  
Philip T. Leat ◽  
Aidan J. Ross ◽  
Sally A. Gibson

AbstractAbundant mantle-derived ultramafic xenoliths occur in Cenozoic (7.7-1.5 Ma) mafic alkaline volcanic rocks along the former active margin of West Antarctica, that extends from the northern Antarctic Peninsula to Jones Mountains. The xenoliths are restricted to post-subduction volcanic rocks that were emplaced in fore-arc or back-arc positions relative to the Mesozoic-Cenozoic Antarctic Peninsula volcanic arc. The xenoliths are spinel-bearing, include harzburgites, lherzolites, wehrlites and pyroxenites, and provide the only direct evidence of the composition of the lithospheric mantle underlying most of the margin. The harzburgites may be residues of melt extraction from the upper mantle (in a mid-ocean ridge type setting), that accreted to form oceanic lithosphere, which was then subsequently tectonically emplaced along the active Gondwana margin. An exposed highly-depleted dunite-serpentinite upper mantle complex on Gibbs Island, South Shetland Islands, supports this interpretation. In contrast, pyroxenites, wehrlites and lherzolites reflect percolation of mafic alkaline melts through the lithospheric mantle. Volatile and incompatible trace element compositions imply that these interacting melts were related to the post-subduction magmatism which hosts the xenoliths. The scattered distribution of such magmatism and the history of accretion suggest that the dominant composition of sub-Antarctic Peninsula lithospheric mantle is likely to be harzburgitic.


2021 ◽  
pp. M55-2018-40
Author(s):  
Malcolm J. Hole

AbstractScattered occurrences of Miocene–Recent volcanic rocks of the alkaline intraplate association represent one of the last expressions of magmatism along the Antarctic Peninsula. The volcanic rocks were erupted after the cessation of subduction which stopped following a series of northward-younging ridge crest–trench collisions. Volcanism has been linked to the development of a growing slab window beneath the extinct convergent margin. Geochemically, lavas range from olivine tholeiite through to basanite and tephrite. Previous studies have emphasized the slab-window tectonic setting as key to allowing melting of peridotite in the asthenospheric void caused by the passage of the slab beneath the locus of volcanism. This hypothesis is revisited in the light of more recent petrological research, and an origin from melting of subducted slab-hosted pyroxenite is considered here to be a more viable alternative for their petrogenesis. Because of the simple geometry of ridge subduction, and the well-established chronology of ridge crest–trench collisions, the Antarctic Peninsula remains a key region for understanding the transition from active to passive margin resulting from cessation of subduction. However, there are still some key issues relating to their tectonomagmatic association, and, principally, the poor geochronological control on the volcanic rocks requires urgent attention.


2021 ◽  
Author(s):  
Ibeth Celia Rojas Macedo ◽  
Wilson Alfredo Suarez Alayza ◽  
Edwin Anibal Loarte Cadenas ◽  
Katy Damacia Medina Marcos

&lt;p&gt;This research aims to explain the influence of climatic variables (temperature and precipitation) in King George Island (KGI) glacier shrinkage on the Antarctic Peninsula. It employed Landsat satellite images from 1989 to 2020, climatic data and ONI index from 1980 to 2019.&lt;/p&gt;&lt;p&gt;King George Island glaciers have lost 10% of their coverage in the last 31 years. Greater glacier shrinkage was shown until the first mid-period assessed, while the retreat rate slowed down for the second half of the studied period. Furthermore, of 73 KGI glaciers, 37% were marine- and land-terminating, 42% were land-terminating and 21% were sea-terminating. Nonetheless, the decreases in the ice-coverage of marine-contact glaciers (35% of glacier coverage reduced) were higher than land-terminating glaciers (17% of glacier coverage reduced).&lt;/p&gt;&lt;p&gt;There was a perceivable fluctuation in annual average air temperature for the 1980-2006 period. Nevertheless, from around 2007 to 2015/2016 there was a slight continuous cooling period and precipitation was somewhat above the average. Therefore, these patterns could explain the recent KGI glacier-retreat deceleration.&lt;/p&gt;&lt;p&gt;Unlike the 1982/1983 and 1997/1998 El Ni&amp;#241;o events, the 2015/2016 El Ni&amp;#241;o was colder with precipitation reduction from the sustained annual amount (since roughly 2007 to 2015/2016) to values below the average. Moreover, during the 2015/2016 El Ni&amp;#241;o, KGI glacier coverage reduction was the lowest for the 31 year-long evaluated. However, it was revealed that the glacier's height could increase by accumulation in El Ni&amp;#241;o years, but glacier mass balance could be more negative due to basal melting. Additionally, land-terminating glaciers have lost more glacier coverage than sea-terminating glaciers throughout this ENSO event.&lt;/p&gt;&lt;p&gt;Hence, climate variability might play a significant role in KGI glacier shrinkage, but calving process, glacier features and so on, further a combination of them should be assessed to reach a better understanding of KGI glacier retreat.&lt;/p&gt;


2009 ◽  
Vol 4 (1) ◽  
pp. 36-39 ◽  
Author(s):  
Martin Sander ◽  
Erli Costa ◽  
Tatiana Balbão ◽  
Ana Paula Carneiro ◽  
César Santos

2009 ◽  
Vol 26 (3) ◽  
pp. 562-566 ◽  
Author(s):  
Joaquim O. Branco ◽  
Erli S. Costa ◽  
Jansen de Araujo ◽  
Edison Durigon ◽  
Maria Alice S. Alves

Sign in / Sign up

Export Citation Format

Share Document