scholarly journals Optimization of the Deposition Rate of Tungsten Inert Gas Mild Steel Using Response Surface Methodology

Engineering ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 784-804
Author(s):  
Nicholas Afemhonkike Imhansoloeva ◽  
Joseph Ifeanyi Achebo ◽  
Kessington Obahiagbon ◽  
John Osadolor Osarenmwinda ◽  
Collins Eruogun Etin-Osa
2020 ◽  
Vol 27 (2) ◽  
pp. 47-56
Author(s):  
A.O. Okewale ◽  
O.A. Adesina ◽  
B.H. Akpeji

Effect of Terminalia catappa leaves (TCL) extract in inhibiting corrosion of mild steel was investigated. In order to obtain the maximum inhibition efficiency, optimization of the process variables affecting corrosion of mild steel was carried out using the Box – Behnken Design plan and desirability function of Response Surface Methodology (RSM). The three parameters - varied include; TCL concentration (inhibitor), immersion time, and temperature and there effects in corrosion inhibition were established. The optimum conditions predicted from the quadratic model were inhibitor’s concentratrion (0.39 g/l), exposure time (8.68 hours), and temperature (36.06 oC) with the inhibition efficiency of 91.95 %. The data fitted well to the quadratic model which was validated. Adsorption of the extract’s component on the mild steel was responsible for the inhibitory effect of the TCL extract.The results showed that 97.92% of the total variation in the inhibition efficiency of TCL can be connected to the variables studied. Keywords: Mild steel, acid, Terminalia catappa, Corrosion, Response surface methodology (RSM).


2021 ◽  
Vol 2 ◽  
pp. 26-33
Author(s):  
P. Pondi ◽  
J. Achebo ◽  
A. Ozigagun

Optimization is a very important techniques applied in the manufacturing industry that utilizes mathematical and artificial intelligence methods. The complexity associated with most optimization techniques have resulted to search for new ones. This search has led to the emergence of response surface methodology (RSM). The paper aims to optimize tungsten inert gas process parameters required to eliminate post-weld crack formation and stabilize heat input in mild steel weldment using RSM. The main input variables considered are voltage, current and speed whereas the response parameter is Brinell hardness number (BHN). The statistical design of experiment was done using the central composite design technique. The experiment was implemented 20 times with 5 specimens per experiment. The responses were measured, recorded and optimized using RSM. From the results, it was observed that a voltage of 21.95 V, current of 190.0 A, and welding speed of 5.00 mm/s produced a weld material with the following optimal properties; BHN (200.959 HAZ), heat input (1.69076 kJ/mm), cooling rate (72.07 /s), preheat temperature (150.68 ) and amount of diffusible hydrogen (12.36 mL/100g). The optimal solution was selected by design expert with a desirability value of 95.40 %.


Sign in / Sign up

Export Citation Format

Share Document