scholarly journals Algorithm for the Vertex Connectivity Problem on Circular Trapezoid Graphs

2019 ◽  
Vol 07 (11) ◽  
pp. 2595-2602
Author(s):  
Hirotoshi Honma ◽  
Kento Nishimura ◽  
Yuto Tamori ◽  
Yoko Nakajima
Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 103
Author(s):  
Tao Cheng ◽  
Matthias Dehmer ◽  
Frank Emmert-Streib ◽  
Yongtao Li ◽  
Weijun Liu

This paper considers commuting graphs over the semidihedral group SD8n. We compute their eigenvalues and obtain that these commuting graphs are not hyperenergetic for odd n≥15 or even n≥2. We further compute the Laplacian spectrum, the Laplacian energy and the number of spanning trees of the commuting graphs over SD8n. We also discuss vertex connectivity, planarity, and minimum disconnecting sets of these graphs and prove that these commuting graphs are not Hamiltonian.


2019 ◽  
Vol 19 (05) ◽  
pp. 2050086 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
K. Prabha Ananthi

Let [Formula: see text] be a k-dimensional vector space over a finite field [Formula: see text] with a basis [Formula: see text]. The nonzero component graph of [Formula: see text], denoted by [Formula: see text], is a simple undirected graph with vertex set as nonzero vectors of [Formula: see text] such that there is an edge between two distinct vertices [Formula: see text] if and only if there exists at least one [Formula: see text] along which both [Formula: see text] and [Formula: see text] have nonzero scalars. In this paper, we find the vertex connectivity and girth of [Formula: see text]. We also characterize all vector spaces [Formula: see text] for which [Formula: see text] has genus either 0 or 1 or 2.


2019 ◽  
Vol 63 (9) ◽  
pp. 1372-1384
Author(s):  
Zuwen Luo ◽  
Liqiong Xu

Abstract Let $G=(V(G), E(G))$ be a connected graph. A subset $T \subseteq V(G)$ is called an $R^{k}$-vertex-cut, if $G-T$ is disconnected and each vertex in $V(G)-T$ has at least $k$ neighbors in $G-T$. The cardinality of a minimum $R^{k}$-vertex-cut is the $R^{k}$-vertex-connectivity of $G$ and is denoted by $\kappa ^{k}(G)$. $R^{k}$-vertex-connectivity is a new measure to study the fault tolerance of network structures beyond connectivity. In this paper, we study $R^{1}$-vertex-connectivity and $R^{2}$-vertex-connectivity of Cayley graphs generated by wheel graphs, which are denoted by $AW_{n}$, and show that $\kappa ^{1}(AW_{n})=4n-7$ for $n\geq 6$; $\kappa ^{2}(AW_{n})=6n-12$ for $n\geq 6$.


2013 ◽  
Vol 12 (04) ◽  
pp. 1250199 ◽  
Author(s):  
T. ASIR ◽  
T. TAMIZH CHELVAM

The intersection graph ITΓ(R) of gamma sets in the total graph TΓ(R) of a commutative ring R, is the undirected graph with vertex set as the collection of all γ-sets in the total graph of R and two distinct vertices u and v are adjacent if and only if u ∩ v ≠ ∅. Tamizh Chelvam and Asir [The intersection graph of gamma sets in the total graph I, to appear in J. Algebra Appl.] studied about ITΓ(R) where R is a commutative Artin ring. In this paper, we continue our interest on ITΓ(R) and actually we study about Eulerian, Hamiltonian and pancyclic nature of ITΓ(R). Further, we focus on certain graph theoretic parameters of ITΓ(R) like the independence number, the clique number and the connectivity of ITΓ(R). Also, we obtain both vertex and edge chromatic numbers of ITΓ(R). In fact, it is proved that if R is a finite commutative ring, then χ(ITΓ(R)) = ω(ITΓ(R)). Having proved that ITΓ(R) is weakly perfect for all finite commutative rings, we further characterize all finite commutative rings for which ITΓ(R) is perfect. In this sequel, we characterize all commutative Artin rings for which ITΓ(R) is of class one (i.e. χ′(ITΓ(R)) = Δ(ITΓ(R))). Finally, it is proved that the vertex connectivity and edge connectivity of ITΓ(R) are equal to the degree of any vertex in ITΓ(R).


2011 ◽  
Vol 03 (03) ◽  
pp. 323-336 ◽  
Author(s):  
FANICA GAVRIL

A circle n-gon is the region between n or fewer non-crossing chords of a circle, no chord connecting the arcs between two other chords; the sides of a circle n-gon are either chords or arcs of the circle. A circle n-gon graph is the intersection graph of a family of circle n-gons in a circle. The family of circle trapezoid graphs is exactly the family of circle 2-gon graphs and the family of circle graphs is exactly the family of circle 1-gon graphs. The family of circle n-gon graphs contains the polygon-circle graphs which have an intersection representation by circle polygons, each polygon with at most n chords. We describe a polynomial time algorithm to find a minimum weight feedback vertex set, or equivalently, a maximum weight induced forest, in a circle n-gon graph with positive weights, when its intersection model by n-gon-interval-filaments is given.


Sign in / Sign up

Export Citation Format

Share Document