scholarly journals Compliance Modeling of a Compliant Stage with Symmetric Configuration

2020 ◽  
Vol 08 (11) ◽  
pp. 2500-2508
Author(s):  
Yunsong Du ◽  
Guohua Gao
1991 ◽  
Vol 06 (17) ◽  
pp. 1547-1552
Author(s):  
A. DAVIDSON ◽  
Y. VERBIN

Asymptotically Euclidean regions connected by a wormhole may differ by their associated gauge coupling constants. This idea is realized in a field-theoretical manner using a conformally coupled scalar field in five dimensions. An SO (4) × U (1) e.m. -symmetric configuration is derived, describing a Kaluza–Klein bottle coupled to a Tolman–Hawking wormhole.


2013 ◽  
Vol 477-478 ◽  
pp. 240-245
Author(s):  
Xiaohui Guan

Bi-directional Flying Wing (BFW) is a new supersonic civil transport shape concept that aims to meet the conflict requirements of high speed cruise and low speed take-off/landing missions. In this paper the Class-Shape-Transformation (CST) shape parameterization method is modified to represent the BFW shape, and new basis functions suitable for the BFW airfoil representation are constructed. The Far-field Composite Element (FCE) wave drag optimization is performed on both the flat bottom and symmetric BFW configurations, and the drag reduction effects and result precision are surveyed. It is suggested that significant wave drag reduction can be achieved by the FCE optimization for both the flat bottom and the symmetric BFW configurations. The wave drag coefficients with sufficient precision can be obtained in the FCE optimization of the symmetric configuration; while the FCE optimization results of the flat bottom one are not accurate enough.


Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 578 ◽  
Author(s):  
Bingrui Lv ◽  
Guilian Wang ◽  
Bin Li ◽  
Haibo Zhou ◽  
Yahui Hu

This paper describes the innovative design of a three-dimensional (3D) motion device based on a flexible mechanism, which is used primarily to produce accurate and fast micro-displacement. For example, the rapid contact and separation of the tool and the workpiece are realized by the operation of the 3D motion device in the machining process. This paper mainly concerns the device performance. A theoretical model for the static performance of the device was established using the matrix-based compliance modeling (MCM) method, and the static characteristics of the device were numerically simulated by finite element analysis (FEA). The Lagrangian principle and the finite element analysis method for device dynamics are used for prediction to obtain the natural frequency of the device. Under no-load conditions, the dynamic response performance and linear motion performance of the three directions were tested and analyzed with different input signals, and three sets of vibration trajectories were obtained. Finally, the scratching experiment was carried out. The detection of the workpiece reveals a pronounced periodic texture on the surface, which verifies that the vibration device can generate an ideal 3D vibration trajectory.


2007 ◽  
Vol 18 (05) ◽  
pp. 535-558 ◽  
Author(s):  
QUANG MINH NGUYEN

Let C be a curve of genus two. We denote by [Formula: see text] the moduli space of semi-stable vector bundles of rank 3 and trivial determinant over C, and by Jd the variety of line bundles of degree d on C. In particular, J1 has a canonical theta divisor Θ. The space [Formula: see text] is a double cover of ℙ8 = |3Θ| branched along a sextic hypersurface, the Coble sextic. In the dual [Formula: see text], where J1 is embedded, there is a unique cubic hypersurface singular along J1, the Coble cubic. We prove that these two hypersurfaces are dual, inducing a non-abelian Torelli result. Moreover, by looking at some special linear sections of these hypersurfaces, we can observe and reinterpret some classical results of algebraic geometry in a context of vector bundles: the duality of the Segre–Igusa quartic with the Segre cubic, the symmetric configuration of 15 lines and 15 points, the Weddle quartic surface and the Kummer surface.


Author(s):  
Shoulin Xu ◽  
Bin He

Collaborative robots have become a research focus because of their wide applications. However, the previous compliance design method of the flexible rotary joint for collaborative robot mainly relied on experience of designers, and “trial and error” method is usually adopted, no feasible and systematic theory for the designer to select numerical value and series-parallel connection mode of the springs and dampers for the flexible rotary joint. Thus, developing a feasible compliance modeling theory to guide the design of the flexible rotary joint is a particularly challenging task. The main contribution of this paper is to present a novel and effective compliance modeling theory of the flexible rotary joint for collaborative robot based on electrical and mechanical passive network synthesis, to provide theoretical and systematic guidances for compliance design of the flexible rotary joint. First, inerter element is introduced into the mechanical system, and the compliance of the flexible rotary joint is expressed as an angular velocity admittance function using electrical and mechanical network analogy. Then, by passive network synthesis theory, the three kinds of compliance realization forms of rational function and four-element compliance realization conditions of biquadratic function for the flexible rotary joint are given using inerters, springs, and dampers. Moreover, numerical examples and simulations are conducted to illustrate effectiveness of the proposed compliance realization method. Finally, discussions are given to illustrate advantages of the proposed compliance modeling and design methods compared with the previous method.


2016 ◽  
Vol 9 (1) ◽  
Author(s):  
Wen-ao Cao ◽  
Huafeng Ding ◽  
Donghao Yang

This paper presents an approach to compliance modeling of three-translation and two-rotation (3T2R) overconstrained parallel manipulators, especially for those with multilink and multijoint limbs. The expressions of applied wrenches (forces/torques) exerted on joints are solved with few static equilibrium equations based on screw theory. A systematic method is proposed for deriving the stiffness model of a limb with considering the couplings between the stiffness along the constrained wrench and the one along the actuated wrench based on strain energy analysis. The compliance model of a 3T2R overconstrained parallel mechanism is established based on stiffness models of limbs and the static equilibrium equation of the moving platform. Comparisons show that the compliance matrix obtained from the method is close to the one obtained from a finite-element analysis (FEA) model. The proposed method has the characteristics of involving low computational efforts and considering stiffness couplings of each limb.


1974 ◽  
Vol 96 (4) ◽  
pp. 595-604 ◽  
Author(s):  
P. A. Engel ◽  
R. G. Bayer

The wear process between two elastic bodies, repeatedly impacting in an axially symmetric configuration is investigated analytically and experimentally. The mechanism initiating wear is that of surface fatigue, and the paper aims to explain the geometric process of wear formation beyond the “zero wear limit.” In doing so, an engineering, predictive model is sought, whereby the depth of a worn crater is related to the stresses arising during impact and to the number of loading cycles on the specimen. Four major accomplishments are embodied in the paper: (1) the quasi-static analysis of impact on a medium of nonuniform (cratered) surface geometry, (2) a heuristic derivation of the optimum wearpath, (3) derivation of the partial differential equation of normal impact wear, and (4) computation of the impact wear process for two discrete impact wear configurations and comparison of experimental work with the analytical results. The resulting conclusion is that impact wear proceeds at continuously varying curvature until the soft body conforms to the shape of the hard indenter. By equating the hysteretic wear energy with a fraction of the peak strain energy, quantitative wear history predictions are made for discrete geometries, such as a hard sphere impacting against a soft plane. Some experimental results are given between steel and aluminum specimens, confirming the analytical predictions.


Sign in / Sign up

Export Citation Format

Share Document