scholarly journals Correlation between Process Variables in Shielded Metal-Arc Welding (SMAW) Process and Post Weld Heat Treatment (PWHT) on Some Mechanical Properties of Low Carbon Steel Welds

Author(s):  
J. O. Olawale ◽  
S. A. Ibitoye ◽  
K.M. Oluwasegun ◽  
M. D. Shittu ◽  
R. C. Ofoezie
2016 ◽  
Vol 705 ◽  
pp. 250-254 ◽  
Author(s):  
Yustiasih Purwaningrum ◽  
Triyono ◽  
M. Wirawan Pu ◽  
Fandi Alfarizi

The aimed of this research is to determine the feasibility and effect of the mixture of the shielding gas in the physical and mechanical properties. Low carbon steel LR grade A in a thickness 12 mm were joined in butt joint types using GMAW (Gas Metal Arc Welding) with groove’s gap 5 mm and groove angle’s 400 with variation of shielding gas composition. The composition of shielding gas that used were 100% Ar, 100 % CO2 and 50% Ar + 50 % CO2. The measured of mechanical properties with regard to strength, hardness and toughness using, tensile test, bending test, Vickers hardness Test, and Charpy impact test respectively. The physical properties examined with optical microscope. Results show that tensile strength of welding metals are higher than raw materials. Welds metal with mixing Ar + CO shielding gas has the highest tensile strength. Hardness of weld metals with the shielding gas 100% Ar, 100 % CO2 and 50% Ar + 50 % CO2 are 244.9; 209.4; and 209.4 VHN respectively. The temperature of Charpy test was varied to find the transition temperature of the materials. The temperature that used were –60°C, -40°C, -20°C, 0°C, 20°C , and room temperature. Weld metals with various shielding gas have similar trends of toughness flux that was corellated with the microstructure of weld .


2021 ◽  
Vol 7 (2) ◽  
pp. 155
Author(s):  
Andika Wisnujati ◽  
Juni Andryansyah

Welding is a very important part of the development and growth of the industry because it has a role in engineering, reparation, and construction. Shielded   Metal   Arc Welding (SMAW) or the conventional arc welding   process is particularly dominant in structural joints, pressure vessels and in maintenance and repair work. In welding, different metals are joined economically and at a much faster rate as compared with other fabrication processes like riveting and casting. The purpose of this research is to find out the cooling media cooler against SMAW smelter tensile strength by using the E6013 electrode. This study uses low carbon steel material that has levels Fe = 98,3%; C = 0,30%, Si = 0,23%. The material is given 75A welding current with cooling variation on the connection result using oil, water, and room temperature. The highest tensile stress value obtained in the oil cooling treatment was 844,76 N/mm2, the highest strain value was obtained on the raw materials of 16%, the highest elasticity value was obtained in the oil cooling treatment of 703.96 N/mm2. According to the research results can be concluded that the variations of cooling media greatly affect the strength of the welding connection.


With the advancement of welding techniques, Arc-welding is one of the most commonly and widely used welding technique for variety of purposes. The underside of welding to be performed makes the molten pool going downward because of gravity vector pulling affects the molten pool. The main purpose of this study is to study how the molten of electrode produced reduce on going downward and produce a good root fusion in overhead position of welding in single V-butt joint with the help of magnetic field on the workpiece. The study of magnet characteristic which includes thebehaviour of molten pool toward magnetic field, the macrostructure and microstructure and its strength should be carried out. Each magnet strength has their own characteristics that affects toward weldment on base metal.As a result, it can be concluded that having a magnetic field applies on base metal A36 low carbon steel may reduce the molten pool from going downward. The selection of a correct magnet strength and welding process may produce good and quality weldment especially in terms of its weld properties and geometry.


2015 ◽  
Vol 813-814 ◽  
pp. 486-490 ◽  
Author(s):  
Amandeep Singh ◽  
Neel Kanth Grover

Welding is basic part of the most modern assembly and manufacturing operations. Shielded metal Arc Welding process has hard facing and fabrication job application due to low cost electrode, increasing alloy transfer efficiency and low dilution with substrate without losing production capacity. SMAW electrode is coated with metal mixture called flux, which on decompose produce gases to restrict weld contamination, generating deoxidizers to disinfect the weld. The choice of electrode for SMAW lies on a number of factors, like weld material, welding direction and the preferred weld properties. The present paper investigate the microstructure and hardness properties of the Low carbon steel pipe welded using shielded metal arc welding with different electrode combinations.


Author(s):  
P. Senthilkumar

The effect of welding current on the tensile properties of low carbon steel welded joint was investigated in this research. In this work mild steel plates were joined by shielded metal arc welding process which is also known as manual metal arc welding used to examine optimum welding current. The welded samples were cut and machined to standard configurations for tensile tests. It was concluded that variation of current affect the tensile properties of the low carbon steel welded joint. As the current increases from 80A to 110A, the ultimate tensile strengths and yeild strength increases. The percentage elongation decreases with increase in welding current but increases at the welding current of 110A.


2019 ◽  
Vol 44 (2) ◽  
pp. 13-19
Author(s):  
Isiaka Oladele ◽  
Davies Alonge ◽  
Timothy Betiku ◽  
Abel Barnabas ◽  
S. Shittu

Experimental investigations were carried out to study the effect of weld joint designs and post weld heat treatment (PWHT) on mechanical and corrosion properties of low carbon steel. Butt, bevel and half-lap joints were produced with a voltage of 20 V and current of 110 A with the use of 3.2 mm diameter electrode E6013. Full annealing was carried out on part of the welded samples in order to consider the possibility of post weld heat treatment for better performance. The mechanical properties (tensile, hardness, and impact toughness) were studied for both the as welded (AW) and PWHT samples as well as the corrosion performance in a natural sea water environment containing 3.5 wt.% NaCl using potentiodynamic polarization method. The microstructure of the AW and PWHT samples of the welded joints with the most promising mechanical and corrosion properties were then characterized by means of an optical microscopy. The results obtained reveals that the bevel joint followed by half lap joint and the butt joint of the as weld samples gave the best combination of the mechanical properties considered. On the other hand, the corrosion properties of the butt joint were superior to that of the bevel and half lap joint, respectively in the PWHT condition as compared to the AW samples. This implies that PWHT improves the corrosion resistance of the welded steel joints.


Sign in / Sign up

Export Citation Format

Share Document