scholarly journals Superheavy Particle Production in High Energy Heavy Ion Collisions

2021 ◽  
Vol 12 (04) ◽  
pp. 433-439
Author(s):  
Alexey Kurepin
1990 ◽  
Vol 42 (4) ◽  
pp. 1519-1529 ◽  
Author(s):  
S. Shaheen ◽  
F. D. Becchetti ◽  
D. A. Roberts ◽  
J. W. Jänecke ◽  
R. L. Stern ◽  
...  

2018 ◽  
Vol 172 ◽  
pp. 05010 ◽  
Author(s):  
Christine Nattrass

The Quark Gluon Plasma (QGP) is created in high energy heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). This medium is transparent to electromagnetic probes but nearly opaque to colored probes. Hard partons produced early in the collision fragment and hadronize into a collimated spray of particles called a jet. The partons lose energy as they traverse the medium, a process called jet quenching. Most of the lost energy is still correlated with the parent parton, contributing to particle production at larger angles and lower momenta relative to the parent parton than in proton-proton collisions. This partonic energy loss can be measured through several observables, each of which give different insights into the degree and mechanism of energy loss. The measurements to date are summarized and the path forward is discussed.


Proceedings ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Justin Mohs ◽  
Sangwook Ryu ◽  
Hannah Elfner

The changing shape of the rapidity spectrum of net protons over the SPS energy range is still lacking theoretical understanding. In this work, a model for string excitation and string fragmentation is implemented for the description of high energy collisions within a hadronic transport approach. The free parameters of the string model are tuned to reproduce the experimentally measured particle production in proton-proton collisions. With the fixed parameters we advance to calculations for heavy ion collisions, where the shape of the proton rapidity spectrum changes from a single peak to a double peak structure with increasing beam energy in the experiment. We present calculations of proton rapidity spectra at different SPS energies in heavy ion collisions. Qualitatively, a good agreement with the experimental findings is obtained. In a future work, the formation process of string fragments will be studied in detail aiming to quantitatively reproduce the measurement.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012134
Author(s):  
V S Borisov ◽  
A Ya Berdnikov ◽  
Ya A Berdnikov ◽  
D O Kotov ◽  
Iu M Mitrankov

Abstract The study of deconfinement state of nuclear matter called quark-gluon plasma (QGP) and phase transition of QGP to hadronic gas is the main goal of high energy physics. Some of the important signatures of QGP formation in heavy-ion collisions include strangeness enhancement at intermediate values of the transverse momentum (ρT ) and a jet quenching effect at high ρT values. Nuclear modification factors (RAB ) for light hadrons are used to quantify these effects. The K *0 and φ mesons can serve as a good probes to investigate QGP properties, because these mesons contain (anti)strange quark and its yields can be measured in a wide ρT range. Comparison of experimental data with theoretical model calculations is important for understanding the evolution of heavy-ion collision. One of the most commonly used event generators to describe experimental results of collider experiments is Pythia8. This paper shows, that Pythia8 predicts RAB values of K *0 and φ less than RAB values in experimental data. Consequently, additional (hidden)strange particle production mechanisms are involved.


Universe ◽  
2019 ◽  
Vol 5 (6) ◽  
pp. 133 ◽  
Author(s):  
Máté Csanád ◽  
Sándor Lökös ◽  
Márton Nagy

Investigation of momentum space correlations of particles produced in high energy reactions requires taking final state interactions into account, a crucial point of any such analysis. Coulomb interaction between charged particles is the most important such effect. In small systems like those created in e + e - - or p + p collisions, the so-called Gamow factor (valid for a point-like particle source) gives an acceptable description of the Coulomb interaction. However, in larger systems such as central or mid-central heavy ion collisions, more involved approaches are needed. In this paper we investigate the Coulomb final state interaction for Lévy-type source functions that were recently shown to be of much interest for a refined description of the space-time picture of particle production in heavy-ion collisions.


Sign in / Sign up

Export Citation Format

Share Document