scholarly journals Study of the Effect of Gas Nitriding Time on Microstructure and Wear Resistance of 42CrMo4 Steel

2017 ◽  
Vol 08 (06) ◽  
pp. 493-507
Author(s):  
Mohamed Ali Terres ◽  
Lotfi Ammari ◽  
Abdelkarim Chérif
2021 ◽  
Vol 8 (1) ◽  
pp. 1-6
Author(s):  
Dominika Panfil-Pryka ◽  
Michał Kulka

The aim of this work was to study the microstructure and friction coefficient of hybrid surface layers, produced by a controlled gas nitriding and laser modification. Nitriding is well-known technique of thermo-chemical treatment, applied in order to produce the surface layers of improved hardness and wear resistance. The phase composition and growth kinetics of the diffusion layer can be controlled using a gas nitriding with changeable nitriding potential. 42CrMo4 steel was treated by composite technology of gas nitriding and laser hardening. The nitriding processes were carried out at temperature of 580 °C for 8h. Next, the nitrided layer was laser-modified using laser TRUMPF TruDiode 3006 with maximal power of 3 kW using the two laser beam powers (P): 0.53 kW and 0.62 kW. Then, the microstructure and properties of the laser-modified nitrided layers were investigated using optical microscopy, Vickers hardness tester and friction wear testing machine. The nitrided layers were subjected to wear tests using a ball-on-disc method at room temperature. The results showed that the microstructure of the produced hybrid layers consisted of the re-melted and heat-affected zones in which martensite mainly occurred. Additional laser treatment effectively increased the hardness, especially in heat-affected zone, as well as the depth of the hardened layer. The layer after modification laser hest tretment were good friction coefficien. The curve of the friction coefficient after the nitrided layer was characterized by large fluctuations. Compared with nitriding technology , the hybrid treatment technology can effectively increase the hardness and wear resistance of the 42CrMo4 steel surface. The effect of LHT on the tribological properties was ambiguous. Although the relatively low value of the average friction coefficient (0.46) was calculated for nitrided layer, the course of friction coefficient was characterized by large fluctuations and the extended grinding-in time. Simultaneously, the course of friction coefficient was very smooth after nitriding and LHT. However, the average friction coefficient were higher, obtaining 0.60 and 0.57 for the hybrid layers, produced using P=530 W and P=620 W, respectively. Keywords: Nitriding; Laser Heat Treatment; Microstructure; Wear Resistance; Microhardness


2020 ◽  
Vol 26 (1) ◽  
pp. 4-6
Author(s):  
Xiliang LIU ◽  
Changjun MAO ◽  
Meihong WU ◽  
Wei CAI ◽  
Mingyang DAI ◽  
...  

In this study, salt bath nitriding was carried out at 565℃ for various times for 304 stainless steel (304SS). The effect of salt bath nitriding time on the microstructure, micro-hardness and wear resistance was investigated systematically. The results showed a nitriding layer was formed during salt bath nitriding, and the thickness of effective hardening layer is duration dependant. The maximum microhardness value of 1200HV0.01 was obtained at optimal duration of 150min, which was five times higher than that of the untreated sample. And the wear resistance could be significantly improved by salt bath nitriding, the lowest weight loss after wear resistance was obtained while nitriding for 150min, which was one tenth of that of untreated sample.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1760 ◽  
Author(s):  
Pia Kutschmann ◽  
Thomas Lindner ◽  
Kristian Börner ◽  
Ulrich Reese ◽  
Thomas Lampke

Gas nitriding is known as a convenient process to improve the wear resistance of steel components. A precipitation-free hardening by low-temperature processes is established to retain the good corrosion resistance of stainless steel. In cases of thermal spray coatings, the interstitial solvation is achieved without an additional surface activation step. The open porosity permits the penetration of the donator media and leads to a structural diffusion. An inhomogeneous diffusion enrichment occurs at the single spray particle edges within the coating’s microstructure. A decreasing diffusion depth is found with increasing surface distance. The present study investigates an adjusted process management for low-temperature gas nitriding of high velocity oxy-fuel-sprayed AISI 316L coatings. To maintain a homogeneous diffusion depth within the coating, a pressure modulation during the process is studied. Additionally, the use of cracked gas as donator is examined. The process management is designed without an additional surface activation step. Regardless of surface distance, microstructural investigations reveal a homogeneous diffusion depth by a reduced processing time. The constant hardening depth allows a reliable prediction of the coatings’ properties. An enhanced hardness and improved wear resistance is found in comparison with the as-sprayed coating condition.


2015 ◽  
Vol 70 ◽  
pp. 45-52 ◽  
Author(s):  
Chao Zheng ◽  
Yonghong Liu ◽  
Hanxiang Wang ◽  
Hengyu Zhu ◽  
Renjie Ji ◽  
...  

2021 ◽  
Vol 2021 (12) ◽  
pp. 12-19
Author(s):  
Mikhail Prokofev ◽  
Larisa Petrova ◽  
Irina Belashova ◽  
Petr Bibikov

A new method of gas nitriding is presented, which produces obtaining high-quality diffusion layers that meet the requirements of the use for various purposes, including aviation ones. Peculiar properties of highly alloyed martensitic steel nitriding after stadial thermo-gas-cyclic nitrogenization under partially dissociated ammonia with air additives have been examined. The results of metallographic studies, diagnostic leach, tests for wear resistance, impact hardness and corrosion stability, depending on the test mode are presented.


Sign in / Sign up

Export Citation Format

Share Document