scholarly journals Impact of the light intensity variation on the performance of solar cell constructed from (Muscovite/TiO<sub>2</sub>/Dye/Al)

2013 ◽  
Vol 05 (10) ◽  
pp. 1069-1077 ◽  
Author(s):  
R. Abd Elgani ◽  
M. H. M. Hilo ◽  
M. D. Abd Allah ◽  
A. Al Hassan ◽  
R. Abd Elhai
2015 ◽  
Vol 8 (1) ◽  
pp. 106-111 ◽  
Author(s):  
Zilong Wang ◽  
Hua Zhang ◽  
Wei Zhao ◽  
Zhigang Zhou ◽  
Mengxun Chen

Research on automatic tracking solar concentrator photovoltaic systems has gained increasing attention in developing the solar PV technology. A paraboloidal concentrator with secondary optic is developed for a three-junction GaInP/GalnAs/Ge solar cell. The concentration ratio of this system is 200 and the photovoltaic cell is cooled by the heat pipe. A detailed analysis on the temperature coefficient influence factors of triple-junction solar cell under different high concentrations (75X, 100X, 125X, 150X, 175X and 200X) has been conducted based on the dish-style concentration photovoltaic system. The results show that under high concentrated light intensity, the temperature coefficient of Voc of triple-junction solar cell is increasing as the concentration ratio increases, from -10.84 mV/°C @ 75X growth to -4.73mV/°C @ 200X. At low concentration, the temperature coefficient of Voc increases rapidly, and then increases slowly as the concentration ratio increases. The temperature dependence of η increased from -0.346%/°C @ 75X growth to - 0.103%/°C @ 200X and the temperature dependence of Pmm and FF increased from -0.125 W/°C, -0.35%/°C @ 75X growth to -0.048W/°C, -0.076%/°C @ 200X respectively. It indicated that the temperature coefficient of three-junction GaInP/GalnAs/Ge solar cell is better than that of crystalline silicon cell array under concentrating light intensity.


2020 ◽  
Vol 52 (8) ◽  
pp. 1040-1056
Author(s):  
S Sakar ◽  
A Bagheri ◽  
S Rönnberg ◽  
MHJ Bollen

There is an ongoing transition from high-pressure sodium lamps to LED street lamps that offer higher efficiency, cost saving and better photometric performance. This transition could lead to unintended consequences such as light flicker and extinguishing in street lighting applications when they are exposed to voltage dips. The goal of this paper is to analyse the light intensity variation of various street lamps when they are exposed to voltage dips. Several performance metrics for quantifying immunity of lamps have been proposed. Values for these metrics are obtained by applying artificial voltage dips to lamps. For voltage dips with residual voltage above 38%, lamps are immune in terms of a short-term light flicker metric. For residual voltage above 25%, light intensity reduces but without extinguishing. Compared to an incandescent lamp and high-pressure sodium lamp, LED street lamps exhibit longer zero-light intensity duration. Most of the studied LED street lamps exhibit uncoordinated light intensity drops, i.e. longer or shifted, with respect to the applied voltage dip. Individual characteristics of LED street lamps require testing before installation to prevent unexpected consequences. Recommendations are given for standardisation committees to implement an assessment method for lighting equipment.


Optik ◽  
2020 ◽  
Vol 200 ◽  
pp. 163362 ◽  
Author(s):  
Fukang Sun ◽  
Jianxia Xie ◽  
Qiansheng Fang ◽  
Xinxin Zhuo

2010 ◽  
Vol 74 ◽  
pp. 170-175 ◽  
Author(s):  
Ben Minnaert ◽  
Peter Veelaert

Most commercially available photovoltaic solar cells are crystalline silicon cells. However, in indoor environments, the efficiency of Si-cells is poor. Typically, the light intensity under artificial lighting conditions is less than 10 W/m² as compared to 100-1000 W/m² under outdoor conditions. Moreover, the spectrum is different from the outdoor solar spectrum and there is more diffuse than direct light. Taken into account the predicted cheaper costs for the production of organic solar cells, a possible niche market for organic PV can be indoor applications. In this article, we study the properties and suitability of several bulk heterojunction organic solar cells (with distinct different absorption spectra) for different indoor conditions. We simulate different light environments and use a silicon solar cell as reference. Depending on the required power for the indoor device, we determine minimum requirements for the environment (light intensity and indoor spectrum) and for the organic solar cell (absorption spectrum and surface area). In this way we determine the appropriateness and conditions for a competitive indoor use of organic solar cells.


2021 ◽  
Vol 926 (1) ◽  
pp. 012091
Author(s):  
W Rahmalia ◽  
E Crespo ◽  
T Usman

Abstract Dye-sensitized solar cell (DSSC) is a third-generation solar cell that has been developed as one of the clean and renewable alternative energies. This study aims to fabricate norbixin-sensitized solar cell (NSSC). Norbixin was obtained from the saponification followed by acidification of bixin and characterized using UV-Visible and FTIR spectroscopy. The solar cell was assembled using anatase-TiO2 semiconductor, KI/I2/MPII in acetonitrile as the electrolyte, and a platinum paste-based cathode. The UV-Visible spectrophotometry analysis results showed three peaks of carotenoid characteristics at 434, 457, and 486 nm. The formation of norbixin was proved by the absence of a spectral peak for the C-O-C ester group of bixin at 1254 dan 1159 cm-1” The cells performance test showed that the maximum energy conversion efficiency of NSSC increased with increasing light intensity up to 0.08 W/cm2. Exposure to the light above this intensity causes a decrease in the maximum energy conversion efficiency due to the temperature factor. The data also showed that the cell assembled was reusable. It still showed relatively good performance until the third day of analysis.


Solar power is future of our planet due to the depletion of non-renewable sources of energy. The renewable sources of energy are responsible for 80% of world’s power and we all are directly dependent on non-renewable source which will only last for 1 or 2 decades. Due to increase in power demands new development in renewable sources of energy are going on due to which on commercial level solar cell achieved an efficiency of 15-20% and improving day by day. Some factors affects the performance of solar panel and decreases its output while some factors improves the efficiency of solar cell and improves its performance. These factors includes temperature of solar panel, humidity, and wind velocity, light intensity, altitude and air pressure along with many other factors. In this paper these factors are discussed along with their impact on solar cell performance


2019 ◽  
Vol 2 (2) ◽  
pp. 53
Author(s):  
Hamzah Hamzah ◽  
Moh. Toifur ◽  
Ishafit Ishafit

Abstrak- The study about fill factor and efficiency solar cell have been done with an automatic drive machine that rotates the surface of the solar cell following the movement of the light source from 0° up to 90° compared without automatic drive.  The test results are then implemented to determine the fill factor and efficiency in variations in light intensity. In this study, polycrystalline solar cell type (99 × 69) mm2, the Philips 100W/220V light bulb at a distance of 18 cm and the driving machine is controlled through an Arduino Uno R3 microcontroller. Data acquisition of current and voltage is carried out with the help of DCP-BTA current and VP-BTA voltage probes that are connected to the mini labquest transducer and displayed to a computer through loggerpro software. The result show that it has been successfully designed an automatic driver of a solar panel (99 × 69) mm2  with an Arduino Uno R3 microcontroller and a logger pro software as data acquisition software. The using solar cell automatically driven can improve the accuracy and precision of current and voltage readings so the fill factor might be increased up to 10% while the efficiency of solar cells does not change. Variations in light intensity can increase the fill factor and efficiency of solar cells. Fill factor and efficiency have an exponentially relationship to light intensity.


Sign in / Sign up

Export Citation Format

Share Document