scholarly journals Pricing European Option When the Stock Price Process Is Being Driven by Geometric Brownian Motion

OALib ◽  
2019 ◽  
Vol 06 (08) ◽  
pp. 1-19
Author(s):  
Kebareng I. Moalosi-Court
2011 ◽  
Vol 14 (03) ◽  
pp. 353-368 ◽  
Author(s):  
JIM GATHERAL ◽  
ALEXANDER SCHIED

With an alternative choice of risk criterion, we solve the HJB equation explicitly to find a closed-form solution for the optimal trade execution strategy in the Almgren–Chriss framework assuming the underlying unaffected stock price process is geometric Brownian motion.


2021 ◽  
Vol 2084 (1) ◽  
pp. 012012
Author(s):  
Tiara Shofi Edriani ◽  
Udjianna Sekteria Pasaribu ◽  
Yuli Sri Afrianti ◽  
Ni Nyoman Wahyu Astute

Abstract One of the major telecommunication and network service providers in Indonesia is PT Indosat Tbk. During the coronavirus (COVID-19) pandemic, the daily stock price of that company was influenced by government policies. This study addresses stock data movement from February 5, 2020 to February 5, 2021, resulted in 243 data, using the Geometric Brownian motion (GBM). The stochastic process realization of this stock price fluctuates and increases exponentially, especially in the 40 latest data. Because of this situation, the realization is transformed into log 10 and calculated its return. As a result, weak stationary in variance is obtained. Furthermore, only data from December 7, 2020 to February 5, 2021 fulfill the GBM assumption of stock price return, as R t 1 * , t 1 * = 1 , 2 , 3 , … , 40 . The main idea of this study is adding datum one by one as much as 10% – 15% of the total data R t 1 * , starting from December 4, 2020 backwards. Following this procedure, and based on the 3% < p-value < 10%, the study shows that its datum can be included in R t 1 * , so t 1 * = − 4. − 3 , − 2 , … , 40 and form five other data groups, R t 2 * , … , R t 6 * . Considering Mean Absolute Percentage Error (MAPE) and amount of data from each group, R t 6 * is selected for modelling. Thus, GBM succeeded in representing the stock price movement of the second most popular Indonesian telecommunication company during COVID-19 pandemic.


2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Hanlei Hu ◽  
Zheng Yin ◽  
Weipeng Yuan

In financial markets with volatility uncertainty, we assume that their risks are caused by uncertain volatilities and their assets are effectively allocated in the risk-free asset and a risky stock, whose price process is supposed to follow a geometric G-Brownian motion rather than a classical Brownian motion. The concept of arbitrage is used to deal with this complex situation and we consider stock price dynamics with no-arbitrage opportunities. For general European contingent claims, we deduce the interval of no-arbitrage price and the clear results are derived in the Markovian case.


2017 ◽  
Vol 6 (3) ◽  
pp. 85
Author(s):  
ömer önalan

In this paper we present a novel model to analyze the behavior of random asset price process under the assumption that the stock price pro-cess is governed by time-changed generalized mixed fractional Brownian motion with an inverse gamma subordinator. This model is con-structed by introducing random time changes into generalized mixed fractional Brownian motion process. In practice it has been observed that many different time series have long-range dependence property and constant time periods. Fractional Brownian motion provides a very general model for long-term dependent and anomalous diffusion regimes. Motivated by this facts in this paper we investigated the long-range dependence structure and trapping events (periods of prices stay motionless) of CSCO stock price return series. The constant time periods phenomena are modeled using an inverse gamma process as a subordinator. Proposed model include the jump behavior of price process because the gamma process is a pure jump Levy process and hence the subordinated process also has jumps so our model can be capture the random variations in volatility. To show the effectiveness of proposed model, we applied the model to calculate the price of an average arithmetic Asian call option that is written on Cisco stock. In this empirical study first the statistical properties of real financial time series is investigated and then the estimated model parameters from an observed data. The results of empirical study which is performed based on the real data indicated that the results of our model are more accuracy than the results based on traditional models.


2018 ◽  
Vol 26 (3) ◽  
pp. 283-310
Author(s):  
Kwangil Bae

In this study, we assume that stock prices follow piecewise geometric Brownian motion, a variant of geometric Brownian motion except the ex-dividend date, and find pricing formulas of American call options. While piecewise geometric Brownian motion can effectively incorporate discrete dividends into stock prices without losing consistency, the process results in the lack of closed-form solutions for option prices. We aim to resolve this by providing analytical approximation formulas for American call option prices under this process. Our work differs from other studies using the same assumption in at least three respects. First, we investigate the analytical approximations of American call options and examine European call options as a special case, while most analytical approximations in the literature cover only European options. Second, we provide both the upper and the lower bounds of option prices. Third, our solutions are equal to the exact price when the size of the dividend is proportional to the stock price, while binomial tree results never match the exact option price in any circumstance. The numerical analysis therefore demonstrates the efficiency of our method. Especially, the lower bound formula is accurate, and it can be further improved by considering second order approximations although it requires more computing time.


2018 ◽  
Vol 974 ◽  
pp. 012047 ◽  
Author(s):  
W Farida Agustini ◽  
Ika Restu Affianti ◽  
Endah RM Putri

2015 ◽  
Vol 4 (3) ◽  
pp. 127 ◽  
Author(s):  
RISKA YUNITA ◽  
KOMANG DHARMAWAN ◽  
LUH PUTU IDA HARINI

Model of stock price movements that follow stochastic process can be formulated in Stochastic Diferential Equation (SDE). The exact solution of SDE model is called Geometric Brownian Motion (GBM) model. Determination the optimal portfolio of three asset that follows Multidimensional GBM model is to be carried out in this research.Multidimensional GBM model represents stock price in the future is affected by three parameter, there are expectation of stock return, risk stock, and correlation between stock return. Therefore, theory of portfolio Markowitz is used on formation of optimal portfolio. Portfolio Markowitz formulates three of same parameter that is calculated on Multidimensional GBM model. The result of this research are optimal portfolio reaches with the proportion of fund are 39,38% for stock BBCA, 59,82% for stock ICBP, and 0,80% for stock INTP. This proportion of fund represents value of parameters that is calculated on modelling stock price.


Sign in / Sign up

Export Citation Format

Share Document