scholarly journals Converting Tsunami Wave Heights to Earthquake Magnitudes

2017 ◽  
Vol 06 (02) ◽  
pp. 89-97 ◽  
Author(s):  
Nils-Axel Mörner
Keyword(s):  
2021 ◽  
Vol 31 (5) ◽  
pp. 1373-1395
Author(s):  
Iman Mazinani ◽  
Mohammad Mohsen Sarafraz ◽  
Zubaidah Ismail ◽  
Ahmad Mustafa Hashim ◽  
Mohammad Reza Safaei ◽  
...  

Purpose Two disastrous Tsunamis, one on the west coast of Sumatra Island, Indonesia, in 2004 and another in North East Japan in 2011, had seriously destroyed a large number of bridges. Thus, experimental tests in a wave flume and a fluid structure interaction (FSI) analysis were constructed to gain insight into tsunami bore force on coastal bridges. Design/methodology/approach Various wave heights and shallow water were used in the experiments and computational process. A 1:40 scaled concrete bridge model was placed in mild beach profile similar to a 24 × 1.5 × 2 m wave flume for the experimental investigation. An Arbitrary Lagrange Euler formulation for the propagation of tsunami solitary and bore waves by an FSI package of LS-DYNA on high-performance computing system was used to evaluate the experimental results. Findings The excellent agreement between experiments and computational simulation is shown in results. The results showed that the fully coupled FSI models could capture the tsunami wave force accurately for all ranges of wave heights and shallow depths. The effects of the overturning moment, horizontal, uplift and impact forces on a pier and deck of the bridge were evaluated in this research. Originality/value Photos and videos captured during the Indian Ocean tsunami in 2004 and the 2011 Japan tsunami showed solitary tsunami waves breaking offshore, along with an extremely turbulent tsunami-induced bore propagating toward shore with significantly higher velocity. Consequently, the outcomes of this current experimental and numerical study are highly relevant to the evaluation of tsunami bore forces on the coastal, over sea or river bridges. These experiments assessed tsunami wave forces on deck pier showing the complete response of the coastal bridge over water.


2019 ◽  
Author(s):  
H. Basak Bayraktar ◽  
Ceren Ozer Sozdinler

Abstract. In this study, time-dependent probabilistic tsunami hazard analysis (PTHA) is performed for Tuzla, Istanbul in the Sea of Marmara, Turkey, using various earthquake scenarios of Prince Island Fault within next 50 and 100 years. Monte Carlo (MC) simulation technique is used to generate a synthetic earthquake catalogue which includes earthquakes having magnitudes between Mw 6.5 and 7.1. This interval defines the minimum and maximum magnitudes for the fault in the case of entire fault rupture which depends on the characteristic fault model. Based on this catalogue, probability of occurrence and associated tsunami wave heights are calculated for each event. The study associates the probabilistic approach with tsunami numerical modelling. Tsunami numerical code NAMI DANCE was used for tsunami simulations. According to the results of the analysis, distribution of probability of occurrence corresponding to tsunami hydrodynamic parameters are represented. Maximum positive and negative wave amplitudes show that tsunami wave heights up to 1 m have 65 % probability of exceedance for next 50 years and this value increases by 85 % in Tuzla region for next 100 years. Inundation depth also exceeds 1 m in the region with probabilities of occurrence of 60 % and 80 % for next 50 and 100 years, respectively. Moreover, Probabilistic inundations maps are generated to investigate inundated zones and the amount of water penetrated inland. Probability of exceedance of 0.3 m wave height, ranges between 10 % and 75 % according to these probabilistic inundation maps and the maximum inundation distance calculated among entire earthquake catalogue is 60 m in this test site. Furthermore, at synthetic gauge points which are selected along the western coast of the Istanbul by including Tuzla coasts. Tuzla is one of the area that shows high probability exceedance of 0.3 m wave height, which is around 90 %, for the next 50 years while this probability reaches up to more than 95 % for the next 100 years.


2020 ◽  
Vol 20 (6) ◽  
pp. 1741-1764
Author(s):  
Hafize Basak Bayraktar ◽  
Ceren Ozer Sozdinler

Abstract. In this study, time-dependent probabilistic tsunami hazard analysis (PTHA) is performed for Tuzla, Istanbul, in the Sea of Marmara, Turkey, using various earthquake scenarios of Prince Island Fault (PIF) within the next 50 and 100 years. The Monte Carlo (MC) simulation technique is used to generate a synthetic earthquake catalogue, which includes earthquakes having moment magnitudes between Mw6.5 and 7.1. This interval defines the minimum and maximum magnitudes for the fault in the case of an entire fault rupture, which depends on the characteristic fault model. Based on this catalogue, probability of occurrence and associated tsunami wave heights are calculated for each event. The study associates the probabilistic approach with tsunami numerical modeling. The tsunami numerical code NAMI DANCE was used for tsunami simulations. According to the results of the analysis, distribution of probability of occurrence corresponding to tsunami hydrodynamic parameters is represented. Maximum positive and negative wave amplitudes show that tsunami wave heights up to 1 m have 65 % probability of exceedance for the next 50 years and this value increases by 85 % in the Tuzla region for the next 100 years. Inundation depth also exceeds 1 m in the region with probabilities of occurrence of 60 % and 80 % for the next 50 and 100 years, respectively. Moreover, probabilistic inundation maps are generated to investigate inundated zones and the amount of water penetrated inland. Probability of exceedance of 0.3 m wave height ranges between 10 % and 75 % according to these probabilistic inundation maps, and the maximum inundation distance calculated in the entire earthquake catalogue is 60 m in this test site. Furthermore, synthetic gauge points are selected along the western coast of Istanbul by including Tuzla coasts. Tuzla is one of the areas that shows high probability exceedance of 0.3 m wave height, which is around 90 %, for the next 50 years while this probability reaches up to more than 95 % for the next 100 years.


2017 ◽  
Vol 174 (8) ◽  
pp. 3043-3063 ◽  
Author(s):  
Paula Dunbar ◽  
George Mungov ◽  
Aaron Sweeney ◽  
Kelly Stroker ◽  
Nicolas Arcos
Keyword(s):  

2020 ◽  
Vol 14 (05) ◽  
pp. 2040003
Author(s):  
Sixue Cheng ◽  
Jun Zeng ◽  
Haijiang Liu

Tsunami databases contain general information of historical tsunamis, which provides valuable and fundamental data to tsunami-related researches. Nevertheless, before adopting the information stored in various tsunami databases, users should be familiar with these databases’ individual features due to their inhomogeneity in data storage. To this end, a comprehensive review of the worldwide existing tsunami databases was conducted in this study. Two kinds of existing databases are recognized, i.e. the individual database and the organizational database. The individual tsunami databases are generally simple and descriptive with less information about tsunami and associated earthquake. Update of individual database is also out of date. Nevertheless, the organizational tsunami databases, with the retrieval function and timely update, are more sophisticated with significant research orientated information, upon which we can obtain the detailed characteristics of a specified tsunami event. In addition, a further comparison is made between two main organizational databases, i.e. the databases of NTL/WLD and NGDC/WDS. In which, the number of recorded tsunami wave heights per event and the number of definite tsunami events per decade both witness an apparent increase after 1900s, and the landslide-generated tsunamis are found to gradually increase after 1960s. The total tsunami events per decade fluctuate around one hundred since 1990s, whereas the definite tsunami events per decade experience a linear increase in this period. It turns out that though quite a part of the data in NTL/WLD is referred to NGDC/WDS, they do collect different tsunami events, and even for the same event, their recording datasets are still not consistent with each other. Figuring out the structural features of different databases and unveiling their connections and differences facilitate relevant research for disaster prevention and mitigation.


Author(s):  
Mikhail M. Lavrentiev ◽  

The field programmable gates array (FPGA) microchip is applied to achieve considerable performance gain in simulation of tsunami wave propagation using personal computer. The two-step Mac-Cormack scheme was used for approximation of the shallow water equations. An idea of PC-based tsunami wave propagation simulation is described. Comparison with the available analytic solutions and numerical results obtained with the reference code show that developed approach provides good accuracy in simulations. It takes less then 1 minute to compute 1 hour of the wave propagation in computational domain that contains 3000 × 2500 nodes. Using the nested greed approach, it is possible to decrease the size of space step from about 300 meters to 10 m. Using the proposed approach, the entire computational process (to calculate the wave propagation from the source area to the coast) takes about 2 min. As an example the distribution of maximal heights of tsunami wave along the coast of the Southern part of Japan is simulated. In particular, the interrelation between maximal wave heights and location of tsunami source is studied. Model sources of size 100 × 200 km have realistic parameters for this region. It was found that only selected parts of the entire coast line are exposed to tsunami wave with dangerous height. However, the occurrence of extreme tsunami wave heights at some of those areas can be attributed to the local bathymetry. The proposed hardware acceleration to compute tsunami wave propagation can be used for rapid (say, during few minutes) evaluation of danger from tsunami wave for a particular location of the coast


Oceanology ◽  
2011 ◽  
Vol 51 (6) ◽  
pp. 907-915 ◽  
Author(s):  
A. I. Zaitsev ◽  
E. N. Pelinovsky

Sign in / Sign up

Export Citation Format

Share Document