scholarly journals Fast Modelling of Tsunami Wave Propagation using PC with Hardware Computer Code Acceleration

Author(s):  
Mikhail M. Lavrentiev ◽  

The field programmable gates array (FPGA) microchip is applied to achieve considerable performance gain in simulation of tsunami wave propagation using personal computer. The two-step Mac-Cormack scheme was used for approximation of the shallow water equations. An idea of PC-based tsunami wave propagation simulation is described. Comparison with the available analytic solutions and numerical results obtained with the reference code show that developed approach provides good accuracy in simulations. It takes less then 1 minute to compute 1 hour of the wave propagation in computational domain that contains 3000 × 2500 nodes. Using the nested greed approach, it is possible to decrease the size of space step from about 300 meters to 10 m. Using the proposed approach, the entire computational process (to calculate the wave propagation from the source area to the coast) takes about 2 min. As an example the distribution of maximal heights of tsunami wave along the coast of the Southern part of Japan is simulated. In particular, the interrelation between maximal wave heights and location of tsunami source is studied. Model sources of size 100 × 200 km have realistic parameters for this region. It was found that only selected parts of the entire coast line are exposed to tsunami wave with dangerous height. However, the occurrence of extreme tsunami wave heights at some of those areas can be attributed to the local bathymetry. The proposed hardware acceleration to compute tsunami wave propagation can be used for rapid (say, during few minutes) evaluation of danger from tsunami wave for a particular location of the coast

2020 ◽  
Vol 10 (12) ◽  
pp. 4159
Author(s):  
Mikhail Lavrentiev ◽  
Konstantin Lysakov ◽  
Andrey Marchuk ◽  
Konstantin Oblaukhov ◽  
Mikhail Shadrin

In order to speed up the calculation of tsunami wave propagation, the field-programmable gate array (FPGA) microchip is used. This makes it possible to achieve valuable performance gain with a modern regular personal computer. The two half-step MacCormack scheme was used herein for numerical approximation of the shallow water system. We studied the distribution of tsunami wave maximal heights along the coast of the southern part of Japan. In particular, the dependence of wave maximal heights on the particular tsunami source location was investigated. Synthetic 100 × 200 km sources have realistic parameters corresponding to this region. As observed numerically, only selected parts of the entire coast line are subject to dangerous tsunami wave amplitudes. The particular locations of such areas strongly depend on the location of the tsunami source. However, the extreme tsunami heights in some of those areas can be attributed to local bathymetry. The proposed hardware acceleration to compute tsunami wave propagation can be used for rapid (say, in a few minutes) tsunami wave danger evaluation for a particular village or industrial unit on the coast.


2020 ◽  
Author(s):  
Raissa Mazova ◽  
Leopold Lobkovsky ◽  
Jorge Van Den Bosch F ◽  
Natalya Baranova ◽  
Gustavo Oses A

<p>Numerical modeling of the generation and propagation of tsunami waves during the earthquake of 1877 in Chile was performed. The possible dynamics of the seismic source are estimated, the wave characteristics of the process and the distribution of the maximum tsunami wave heights along the coast of the considered water area are obtained. On May 9, 1877, at 9:16 pm local time, an earthquake and subsequent tsunami were recorded in the area of ​​Iquique. The epicenter of the earthquake was in the Pacific Ocean near the city of Iquique. The calculated magnitude of the earthquake was estimated at 8.5-8.8. The highest intensity was noted between the cities of Arica, Iquique and Antofagasta, Tokopiglia, Gatiko and Kobikha were also severely affected. All these cities were destroyed. Earthquake victims were reported from Pisco to Antofagasta. In the area of ​​the cities of Iquique, Gatico and Kobiha, five minutes after the earthquake, tsunami waves arrived with a first wave height of 10 to 15 meters. The second wave she came in 15 minutes after the main shock, she was more powerful - her height was from 20 to 23 meters. It should be noted that in various documentary sources the data for a number of points on the Chilean coast are contradictory. So, for example, in Arica the spread of wave heights from 9 to 20m, in Iquique 6-9m, in Kobikha 9-12m, in Mejilones a spread from 12 to 21m. Given the very diverse information on the tsunami wave height on the coast and based on the conclusions of the authors of [1] on the similarity of the continental slope of the deep sea trench near Arica city and Kuril-Kamchatka area, for which the earthquake key model was successfully applied in [2] [3], we suggested that the 1877 earthquake had complex dynamics. For the numerical implementation of this process, it was decided to use the key model of the earthquake, which allows breaking the earthquake source into a large number of block keys, taking into account aftershock activity and bathymetry of the earthquake source area. In this process, the displacement of each block in the source of the earthquake occurs by a different amount at different times. When numerically simulating an earthquake and generating tsunami waves, the key model of the earthquake source allows you to obtain a complex distribution of the maximum wave heights on the shore, for a given dynamics of blocks in the earthquake source.</p><p> </p><p>[1] <strong>Mazova R.Kh,</strong>  <strong>Ramirez J.F</strong>. Tsunami waves with an initial negative wave on the Chilean coast // Natural Hazards 20 (1999) 83-92. </p><p>[2] <strong>Lobkovsky, L. I., Mazova, R. Kh, Kataeva, L Yu., & Baranov, B.V</strong>.  Generation and propagation of catastrophic tsunami in the basin of Sea of Okhotsk. Possible scenarios, // Doklady, 410, 528–531 (2006).</p><p>[3] <strong>Lobkovsky L.I., Baranov BV.</strong> Keyboard model of strong earthquakes in island arcs and active continental margins // Doklady of the Academy of Sciences of the USSR. V. 275. № 4. P. 843-847. 1984.</p>


2021 ◽  
Vol 2099 (1) ◽  
pp. 012063
Author(s):  
T A Voronina ◽  
A V Loskutov

Abstract One of the promising methods of the early warning of a tsunami is obtaining data of the wave heights based on the numerical solution of the inverse tsunami problem by using the truncated singular value decomposition method as a variant of the least-squares method. The problem is considered within the framework of the linear theory of wave propagation. The technique proposed allows one to avoid the inevitable instability of the numerical solution. It is possible to choose the most informative directions for the placement of the observation stations, which is based on the analysis of the energy transfer by the spatial modes generated by each right singular vector. As it has turned out, the best location of the stations is closely related to the directions of the most intense distribution of the tsunami energy. One of the significant advantages of the approach presented is the possibility, without additional calculations of the tsunami wave propagation from a reconstructed source, to obtain the tsunami wave heights at the points at which there are no observations but which are associated when calculating the matrix of the direct problem operator. The implementation of the approach proposed of the actual event of the Chilean Illapel Tsunami of September 16, 2015, is presented.


Author(s):  
М. М. Лаврентьев ◽  
К. Ф. Лысаков ◽  
А. Г. Марчук ◽  
К. К. Облаухов

В данной статье рассматривается решение задачи быстрой численной оценки высоты волн цунами от гипотетического очага вдоль тихоокеанского побережья полуострова Камчатка и Курильских островов. Мы фокусируемся на очень быстром (практически в режиме поступления данных) численном моделировании распространения волны цунами на основе ПК в соответствии с классическим приближением теории мелкой воды. Существенный прирост производительности достигается за счет использования преимуществ современных компьютерных архитектур, а именно вентильных матриц, программируемых пользователем (Field Programmable Gate Array – FPGA). Разностная схема Мак-Кормака второго порядка аппроксимации для решения системы дифференциальных уравнений мелкой воды [1] реализована на чипе FPGA в составе платы, специально разработанной авторами для решения этой задачи [2, 3]. Численные тесты показывают, что для расчета 3600 шагов по времени распространения волны цунами в расчетной области размером приблизительно 2000х2000 км (3120х2400 расчетных узлов) требуется всего несколько секунд для моделирования цунами от модельного источника волны цунами на сетке с пространственным шагом около 900 м. Созданный на базе FPGA спецвычислитель был также протестирован по точности сравнением с аналитическими решениями, полученными Ан. Марчуком [4, 5] для некоторых модельных топографий дна. The study offers a fast quantitative estimation of tsunami wave heights coming from a hypothetical source along the Pacific coast of the Kamchatka Peninsula and the Kuril Islands. We focus on a very fast (virtually real-time) PC simulation of tsunami wave propagation using the classical approximation of the shallow water theory. Significant performance gains are achieved by taking advantage of modern computer architectures, namely Field Programmable Gate Arrays (FPGAs). The McCormack difference scheme of the second order of approximation for solving the system of shallow water differential equations [1] is implemented with an FPGA chip on a custom PCB designed by the authors [2, 3]. Numerical tests indicate that it takes only a few seconds to simulate a tsunami wave from a simulated source on a 900 m spacing grid to analyze 3,600 time increments of propagation of the tsunami wave propagation in about 2000x2000 km area (3,120x2,400 nodes.) The customized FPGA computer was also tested for accuracy by comparing with the analytical solutions obtained by Marchuk [4, 5] for some reference bottom topographies.  


Geophysics ◽  
2008 ◽  
Vol 73 (3) ◽  
pp. T23-T35 ◽  
Author(s):  
Martin Käser ◽  
Michael Dumbser

We have extended a new highly accurate numerical scheme for unstructured 2D and 3D meshes based on the discontinuous Galerkin approach to simulate seismic wave propagation in heterogeneous media containing fluid-solid interfaces. Because of the formulation of the wave equations as a unified first-order hyperbolic system in velocity stress, the fluid can be in movement along the interface. The governing equations within the moving fluid are derived from well-known first principles in fluid mechanics. The discontinuous Galerkin approach allows for jumps of the material parameters and the solution across element interfaces, which are handled by Riemann solvers or numerical fluxes. The use of Riemann solvers at the element interfaces makesthe treatment of the fluid particularly simple bysetting the shearmodulus in the fluid region to zero. No additional compatibility relations, such as vanishing shear stress or continuity of normal stresses, are necessary to couple the solid and fluid along an interface. The Riemann solver automatically recognizes the jump of the material coefficients at the interface and provides the correct numerical fluxes for fluid-solid contacts. Therefore, wave propagation in the entire computational domain containing heterogeneous media, namely moving fluids and elastic solids, can be described by a uniform set of acoustic and elastic wave equations. The accuracy of the proposed scheme is confirmed by comparing numerical results against analytic solutions. The potential of the new method was demonstrated in a 3D model problem typical for marine seismic exploration with a fluid-solid interface determined by a complicated bathymetry.


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 147
Author(s):  
Benjamin R. Jordan

Kukuiho’olua Island is an islet that lies 164 m due north of Laie Point, a peninsula of cemented, coastal, Pleistocene and Holocene sand dunes. Kukuiho’olua Island consists of the same dune deposits as Laie Point and is cut by a sea arch, which, documented here for first time, may have formed during the 1 April 1946 “April Fools’s Day Tsunami.” The tsunami-source of formation is supported by previous modeling by other authors, which indicated that the geometry of overhanging sea cliffs can greatly strengthen and focus the force of tsunami waves. Additional changes occurred to the island and arch during the 2015–2016 El Niño event, which was one of the strongest on record. During the event, anomalous wave heights and reversed wind directions occurred across the Pacific. On the night of 24–25 February 2016, large storm waves, resulting from the unique El Niño conditions washed out a large boulder that had lain within the arch since its initial formation, significantly increasing the open area beneath the arch. Large waves also rose high enough for seawater to flow over the peninsula at Laie Point, causing significant erosion of its upper surface. These changes at Laie Point and Kukuio’olua Island serve as examples of long-term, intermittent change to a coastline—changes that, although infrequent, can occur quickly and dramatically, potentially making them geologic hazards.


2021 ◽  
Vol 1789 (1) ◽  
pp. 012011
Author(s):  
M M Lavrentiev ◽  
K F Lysakov ◽  
An G Marchuk ◽  
K K Oblaukhov ◽  
M Yu Shadrin

Author(s):  
C. G. Giannopapa ◽  
G. Papadakis

In the conventional approach for fluid-structure interaction problems, the fluid and solid components are treated separately and information is exchanged across their interface. According to the conventional terminology, the current numerical methods can be grouped in two major categories: Partitioned methods and monolithic methods. Both methods use two separate sets of equations for fluid and solid. A unified solution method has been presented [1], which is different from these methods. The new method treats both fluid and solid as a single continuum, thus the whole computational domain is treated as one entity discretised on a single grid. Its behavior is described by a single set of equations, which are solved fully implicitly. In this paper, 2 time marching and one spatial discretisation scheme, widely used for fluids’ equations, are applied for the solution of the equations for solids. Using linear stability analysis, the accuracy and dissipation characteristics of the resulting difference equations are examined. The aforementioned schemes are applied to a transient structural problem (beam bending) and the results compare favorably with available analytic solutions and are consistent with the conclusions of the stability analysis. A parametric investigation using different meshes, time steps and beam sizes is also presented. For all cases examined the numerical solution was stable and robust and proved to be suitable for the next stage of application to full fluid-structure interaction problems.


2021 ◽  
Vol 31 (5) ◽  
pp. 1373-1395
Author(s):  
Iman Mazinani ◽  
Mohammad Mohsen Sarafraz ◽  
Zubaidah Ismail ◽  
Ahmad Mustafa Hashim ◽  
Mohammad Reza Safaei ◽  
...  

Purpose Two disastrous Tsunamis, one on the west coast of Sumatra Island, Indonesia, in 2004 and another in North East Japan in 2011, had seriously destroyed a large number of bridges. Thus, experimental tests in a wave flume and a fluid structure interaction (FSI) analysis were constructed to gain insight into tsunami bore force on coastal bridges. Design/methodology/approach Various wave heights and shallow water were used in the experiments and computational process. A 1:40 scaled concrete bridge model was placed in mild beach profile similar to a 24 × 1.5 × 2 m wave flume for the experimental investigation. An Arbitrary Lagrange Euler formulation for the propagation of tsunami solitary and bore waves by an FSI package of LS-DYNA on high-performance computing system was used to evaluate the experimental results. Findings The excellent agreement between experiments and computational simulation is shown in results. The results showed that the fully coupled FSI models could capture the tsunami wave force accurately for all ranges of wave heights and shallow depths. The effects of the overturning moment, horizontal, uplift and impact forces on a pier and deck of the bridge were evaluated in this research. Originality/value Photos and videos captured during the Indian Ocean tsunami in 2004 and the 2011 Japan tsunami showed solitary tsunami waves breaking offshore, along with an extremely turbulent tsunami-induced bore propagating toward shore with significantly higher velocity. Consequently, the outcomes of this current experimental and numerical study are highly relevant to the evaluation of tsunami bore forces on the coastal, over sea or river bridges. These experiments assessed tsunami wave forces on deck pier showing the complete response of the coastal bridge over water.


Sign in / Sign up

Export Citation Format

Share Document