Uncertainty in tsunami wave heights and arrival times caused by the rupture velocity in the strike direction of large earthquakes

2015 ◽  
Vol 80 (3) ◽  
pp. 1749-1782 ◽  
Author(s):  
Yo Fukutani ◽  
Suppasri Anawat ◽  
Fumihiko Imamura
2021 ◽  
Vol 31 (5) ◽  
pp. 1373-1395
Author(s):  
Iman Mazinani ◽  
Mohammad Mohsen Sarafraz ◽  
Zubaidah Ismail ◽  
Ahmad Mustafa Hashim ◽  
Mohammad Reza Safaei ◽  
...  

Purpose Two disastrous Tsunamis, one on the west coast of Sumatra Island, Indonesia, in 2004 and another in North East Japan in 2011, had seriously destroyed a large number of bridges. Thus, experimental tests in a wave flume and a fluid structure interaction (FSI) analysis were constructed to gain insight into tsunami bore force on coastal bridges. Design/methodology/approach Various wave heights and shallow water were used in the experiments and computational process. A 1:40 scaled concrete bridge model was placed in mild beach profile similar to a 24 × 1.5 × 2 m wave flume for the experimental investigation. An Arbitrary Lagrange Euler formulation for the propagation of tsunami solitary and bore waves by an FSI package of LS-DYNA on high-performance computing system was used to evaluate the experimental results. Findings The excellent agreement between experiments and computational simulation is shown in results. The results showed that the fully coupled FSI models could capture the tsunami wave force accurately for all ranges of wave heights and shallow depths. The effects of the overturning moment, horizontal, uplift and impact forces on a pier and deck of the bridge were evaluated in this research. Originality/value Photos and videos captured during the Indian Ocean tsunami in 2004 and the 2011 Japan tsunami showed solitary tsunami waves breaking offshore, along with an extremely turbulent tsunami-induced bore propagating toward shore with significantly higher velocity. Consequently, the outcomes of this current experimental and numerical study are highly relevant to the evaluation of tsunami bore forces on the coastal, over sea or river bridges. These experiments assessed tsunami wave forces on deck pier showing the complete response of the coastal bridge over water.


2019 ◽  
Author(s):  
H. Basak Bayraktar ◽  
Ceren Ozer Sozdinler

Abstract. In this study, time-dependent probabilistic tsunami hazard analysis (PTHA) is performed for Tuzla, Istanbul in the Sea of Marmara, Turkey, using various earthquake scenarios of Prince Island Fault within next 50 and 100 years. Monte Carlo (MC) simulation technique is used to generate a synthetic earthquake catalogue which includes earthquakes having magnitudes between Mw 6.5 and 7.1. This interval defines the minimum and maximum magnitudes for the fault in the case of entire fault rupture which depends on the characteristic fault model. Based on this catalogue, probability of occurrence and associated tsunami wave heights are calculated for each event. The study associates the probabilistic approach with tsunami numerical modelling. Tsunami numerical code NAMI DANCE was used for tsunami simulations. According to the results of the analysis, distribution of probability of occurrence corresponding to tsunami hydrodynamic parameters are represented. Maximum positive and negative wave amplitudes show that tsunami wave heights up to 1 m have 65 % probability of exceedance for next 50 years and this value increases by 85 % in Tuzla region for next 100 years. Inundation depth also exceeds 1 m in the region with probabilities of occurrence of 60 % and 80 % for next 50 and 100 years, respectively. Moreover, Probabilistic inundations maps are generated to investigate inundated zones and the amount of water penetrated inland. Probability of exceedance of 0.3 m wave height, ranges between 10 % and 75 % according to these probabilistic inundation maps and the maximum inundation distance calculated among entire earthquake catalogue is 60 m in this test site. Furthermore, at synthetic gauge points which are selected along the western coast of the Istanbul by including Tuzla coasts. Tuzla is one of the area that shows high probability exceedance of 0.3 m wave height, which is around 90 %, for the next 50 years while this probability reaches up to more than 95 % for the next 100 years.


2020 ◽  
Vol 20 (6) ◽  
pp. 1741-1764
Author(s):  
Hafize Basak Bayraktar ◽  
Ceren Ozer Sozdinler

Abstract. In this study, time-dependent probabilistic tsunami hazard analysis (PTHA) is performed for Tuzla, Istanbul, in the Sea of Marmara, Turkey, using various earthquake scenarios of Prince Island Fault (PIF) within the next 50 and 100 years. The Monte Carlo (MC) simulation technique is used to generate a synthetic earthquake catalogue, which includes earthquakes having moment magnitudes between Mw6.5 and 7.1. This interval defines the minimum and maximum magnitudes for the fault in the case of an entire fault rupture, which depends on the characteristic fault model. Based on this catalogue, probability of occurrence and associated tsunami wave heights are calculated for each event. The study associates the probabilistic approach with tsunami numerical modeling. The tsunami numerical code NAMI DANCE was used for tsunami simulations. According to the results of the analysis, distribution of probability of occurrence corresponding to tsunami hydrodynamic parameters is represented. Maximum positive and negative wave amplitudes show that tsunami wave heights up to 1 m have 65 % probability of exceedance for the next 50 years and this value increases by 85 % in the Tuzla region for the next 100 years. Inundation depth also exceeds 1 m in the region with probabilities of occurrence of 60 % and 80 % for the next 50 and 100 years, respectively. Moreover, probabilistic inundation maps are generated to investigate inundated zones and the amount of water penetrated inland. Probability of exceedance of 0.3 m wave height ranges between 10 % and 75 % according to these probabilistic inundation maps, and the maximum inundation distance calculated in the entire earthquake catalogue is 60 m in this test site. Furthermore, synthetic gauge points are selected along the western coast of Istanbul by including Tuzla coasts. Tuzla is one of the areas that shows high probability exceedance of 0.3 m wave height, which is around 90 %, for the next 50 years while this probability reaches up to more than 95 % for the next 100 years.


2017 ◽  
Vol 174 (8) ◽  
pp. 3043-3063 ◽  
Author(s):  
Paula Dunbar ◽  
George Mungov ◽  
Aaron Sweeney ◽  
Kelly Stroker ◽  
Nicolas Arcos
Keyword(s):  

2010 ◽  
Vol 10 (6) ◽  
pp. 1085-1100 ◽  
Author(s):  
J. Behrens ◽  
A. Androsov ◽  
A. Y. Babeyko ◽  
S. Harig ◽  
F. Klaschka ◽  
...  

Abstract. A new tsunami forecasting method for near-field tsunami warning is presented. This method is applied in the German-Indonesian Tsunami Early Warning System, as part of the Indonesian Tsunami Warning Center in Jakarta, Indonesia. The method employs a rigorous approach to minimize uncertainty in the assessment of tsunami hazard in the near-field. Multiple independent sensors are evaluated simultaneously in order to achieve an accurate estimation of coastal arrival times and wave heights within very short time after a submarine earthquake event. The method is validated employing a synthetic (simulated) tsunami event, and in hindcasting the minor tsunami following the Padang 30 September 2009 earthquake.


2017 ◽  
Vol 06 (02) ◽  
pp. 89-97 ◽  
Author(s):  
Nils-Axel Mörner
Keyword(s):  

2020 ◽  
Vol 14 (05) ◽  
pp. 2040003
Author(s):  
Sixue Cheng ◽  
Jun Zeng ◽  
Haijiang Liu

Tsunami databases contain general information of historical tsunamis, which provides valuable and fundamental data to tsunami-related researches. Nevertheless, before adopting the information stored in various tsunami databases, users should be familiar with these databases’ individual features due to their inhomogeneity in data storage. To this end, a comprehensive review of the worldwide existing tsunami databases was conducted in this study. Two kinds of existing databases are recognized, i.e. the individual database and the organizational database. The individual tsunami databases are generally simple and descriptive with less information about tsunami and associated earthquake. Update of individual database is also out of date. Nevertheless, the organizational tsunami databases, with the retrieval function and timely update, are more sophisticated with significant research orientated information, upon which we can obtain the detailed characteristics of a specified tsunami event. In addition, a further comparison is made between two main organizational databases, i.e. the databases of NTL/WLD and NGDC/WDS. In which, the number of recorded tsunami wave heights per event and the number of definite tsunami events per decade both witness an apparent increase after 1900s, and the landslide-generated tsunamis are found to gradually increase after 1960s. The total tsunami events per decade fluctuate around one hundred since 1990s, whereas the definite tsunami events per decade experience a linear increase in this period. It turns out that though quite a part of the data in NTL/WLD is referred to NGDC/WDS, they do collect different tsunami events, and even for the same event, their recording datasets are still not consistent with each other. Figuring out the structural features of different databases and unveiling their connections and differences facilitate relevant research for disaster prevention and mitigation.


2007 ◽  
Vol 24 (1) ◽  
pp. 117-123 ◽  
Author(s):  
Harold O. Mofjeld ◽  
Frank I. González ◽  
Vasily V. Titov ◽  
Angie J. Venturato ◽  
Jean C. Newman

Abstract A theoretical study was carried out to understand how the probability distribution for maximum wave heights (ηm) during tsunamis depends on the initial tsunami amplitude (A) and the tides. It was assumed that the total wave height is the linear sum of the tides and tsunami time series in which the latter is decaying exponentially in amplitude with an e-folding time of 2.0 days, based on the behavior of observed Pacific-wide tsunamis. Direct computations were made to determine the statistics of maximum height for a suite of different arrival times and initial tsunami amplitudes. Using predicted tides for 1992 when the lunar nodal f factors were near unity during the present National Tidal Datum Epoch 1983–2001, the results show that when A is small compared with the tidal range the probability density function (PDF) of the difference ηm − A is closely confined in height near mean higher high water (MHHW). The ηm − A PDF spreads in height and its mean height ηo − A decreases, approaching the PDF of the tides and MSL, respectively, when A becomes large compared with the tidal range. A Gaussian form is found to be a close approximation to the ηm − A PDF over much of the amplitude range; associated parameters for 30 coastal stations along the U.S. West Coast, Alaska, and Hawaii are given in the paper. The formula should prove useful in probabilistic mapping of coastal tsunami flooding.


2020 ◽  
Author(s):  
Mauricio Fuentes ◽  
Francisco Uribe ◽  
Sebastian Riquelme ◽  
Jaime Campos

<p>There are only a few analytical 2+1 D models for tsunami propagation, in which most of them treat the tsunami generation as an isolated part from a static deformation field, usually obtained from seismic models. This work examines the behavior of the tsunami propagation in a simple set-up including a time source function which accounts for a time description of the rupture process on the seismic source. An analytical solution is derived in the wavenumber domain, which is quickly inverted to space with the Fast Fourier Transform. The solution is obtained in closed form in the 1+1D case. The inclusion of temporal parameters of the source such as rise time and rupture velocity reveals a specific domain of slow earthquakes that enhance the tsunami amplitudes and produce non-negligible shifts on the arrival times. The obtained results confirm that amplification occurs when the rupture velocity matches the long-wave tsunami speed and the static approximation corresponds to a limit case for (relatively) fast ruptures. </p>


Sign in / Sign up

Export Citation Format

Share Document