scholarly journals A Comparative Study of Closure Relations for CFD Modelling of Bubbly Flow in a Vertical Pipe

2021 ◽  
Vol 11 (02) ◽  
pp. 98-134
Author(s):  
Geoffrey S. Gray ◽  
Scott J. Ormiston
2003 ◽  
Vol 29 (6) ◽  
pp. 778-786 ◽  
Author(s):  
Naoki Shimada ◽  
Akio Tomiyama ◽  
Iztok Zun ◽  
Hiroyuki Asano

Author(s):  
Daeseong Jo ◽  
Shripad T. Revankar

A two phase bubbly flow through a packed bed was studied for dominant bubble breakup and coalescence mechanisms through experiments and CFD modeling. Data on various two-phase parameters, such as local void fraction, bubble velocity, size, number, and shape were obtained from the high speed video images. Results indicated that when a flow regime changed from bubbly to either trickling or pulsing flow, the number of average size bubbles significantly decreased and the shape of majority of bubbles was no longer spherical. The bubble coalescence and breakup mechanisms depend on local conditions such as local velocity of the bubble and pore geometry. The CFD analysis using CFX software package was carried out to study bubble size distributions. In the analysis the models for interactions were examined for each case of bubble breakup flow and bubble coalescence. A comparative study was performed on the resulting bubble size distributions, breakup and coalescence rates estimated by individual models. For change of bubble size distributions along the axial direction medians was used as an comparative parameter and the CFD results on bubble medians were compared against the experimental data. This comparative study showed that the predictions estimated by CFD analyses with the bubble breakup and coalescence models currently available in the literature do not agree with the experimental data.


Author(s):  
Carlos Peña-Monferrer ◽  
Alberto Passalacqua ◽  
Sergio Chiva ◽  
José L. Muñoz-Cobo

An Eulerian-Eulerian approach was used to model adiabatic bubbly flow with CFD techniques. The OpenFOAM® solver twoPhaseEulerFoam was modified to predict upward bubbly flow in vertical pipes. Interfacial force and bubble induced turbulence models are studied and implemented. The population balance equation included in the two-fluid model is solved to simulate a polydisperse flow with the quadrature method of moments approximation. Two-phase flow experiments with different superficial velocities of gas and water at different temperatures are used to validate the solver. Radial distributions of void fraction, air and water velocities, Sauter mean diameter and turbulence intensity are compared with the computational results. The computational results agree well with the experiments showing the capability of the solver to predict two-phase flow characteristics.


Sign in / Sign up

Export Citation Format

Share Document