scholarly journals Application of Dual-Energy CT Non-Linear Fusion Technology in Improving CTA Image Quality of Renal Cancer

2018 ◽  
Vol 08 (03) ◽  
pp. 73-80
Author(s):  
Shuiqing Zhuo ◽  
Xiaoling Chen ◽  
Jingping Yu ◽  
Sihui Zeng ◽  
Lizhi Liu
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anand John Vellarackal ◽  
Achim Hermann Kaim

AbstractTo evaluate the influence of dual-energy CT (DECT) and Virtual monochromatic spectral (VMS) imaging on: (1) the artefact size of geometrically identical orthopaedic implants consisting of three different compositions and (2) the image quality of the surrounding bone, three similar phantoms—each featuring one femoral stem composed of either titanium, chrome-cobalt or stainless steel surrounded by five calcium pellets (200 mg hydroxyapatite/calcium carbonate) to simulate bony tissue and one reference pellet located away from the femoral stem—were built. DECT with two sequential scans (80 kVp and 140 kVp; scan-to-scan technique) was performed, and VMS images were calculated between 40 and 190 keV. The artefact sizes were measured volumetrically by semiautomatic selection of regions of interest (ROIs), considering the VMS energies and the polychromatic spectres. Moreover, density and image noise within the pellets were measured. All three phantoms exhibit artefact size reduction as energy increases from 40 to 190 keV. Titanium exhibited a stronger reduction than chrome-cobalt and stainless steel. The artefacts were dependent on the diameter of the stem. Image quality increases with higher energies on VMS with a better depiction of surrounding structures. Monoenergetic energies 70 keV and 140 keV demonstrate superior image quality to those produced by spectral energies 80 kVp and 140 kVp.


2019 ◽  
Vol 212 (6) ◽  
pp. 1253-1259 ◽  
Author(s):  
Dagmar Grob ◽  
Ewoud Smit ◽  
Luuk J. Oostveen ◽  
Miranda M. Snoeren ◽  
Mathias Prokop ◽  
...  

2010 ◽  
Vol 21 (3) ◽  
pp. 315-321 ◽  
Author(s):  
Wieland H. Sommer ◽  
Anno Graser ◽  
Christoph R. Becker ◽  
Dirk A. Clevert ◽  
Maximilian F. Reiser ◽  
...  

2018 ◽  
Vol 27 (5) ◽  
pp. 1552-1561 ◽  
Author(s):  
Maximilian F. Kasparek ◽  
Michael Töpker ◽  
Mathias Lazar ◽  
Michael Weber ◽  
Michael Kasparek ◽  
...  

2014 ◽  
Vol 21 (4) ◽  
pp. 514-522 ◽  
Author(s):  
Sonja Sudarski ◽  
Paul Apfaltrer ◽  
John W. Nance ◽  
Mathias Meyer ◽  
Christian Fink ◽  
...  

2016 ◽  
Vol 27 (2) ◽  
pp. 642-650 ◽  
Author(s):  
Julian L. Wichmann ◽  
Andrew D. Hardie ◽  
U. Joseph Schoepf ◽  
Lloyd M. Felmly ◽  
Jonathan D. Perry ◽  
...  

2014 ◽  
Vol 83 (2) ◽  
pp. 322-328 ◽  
Author(s):  
Paul Apfaltrer ◽  
Sonja Sudarski ◽  
David Schneider ◽  
John W. Nance ◽  
Holger Haubenreisser ◽  
...  

Author(s):  
Christoph Stern ◽  
Magda Marcon ◽  
Samy Bouaicha ◽  
Karl Wieser ◽  
Andrea B. Rosskopf ◽  
...  

Abstract Objective To evaluate the image quality of dual energy CT (DECT) of the shoulder after arthrography and of virtual non-contrast (VNC) 3D reformats of the glenoid and to compare glenoid measurements on VNC 3D reformats and on 2D CTs. Materials and methods DECT arthrography (80 kV/140 kV) was performed in 42 shoulders of 41 patients with instability using diluted iodinated contrast media (80 mg/ml). VNC images and VNC 3D reformats of the glenoid were calculated using image postprocessing. Dose parameters, CT values of intraarticular iodine and muscle, image contrast (iodine/muscle), and image quality (5-point scale: 1 = worst, 5 = best) were evaluated. Two independent readers assessed glenoid morphology and performed glenoid measurements on 2D and 3D images. Results Calculation of VNC images and VNC 3D reformats was successful in 42/42 shoulders (100%). The effective dose was mean 1.95 mSv (± 0.9 mSv). CT values of iodine and muscle were mean 1014.6 HU (± 235.8 HU) and 64.5 HU(± 8.6 HU), respectively, and image contrast was mean 950.2 HU (± 235.5 HU). Quality of cross-sectional images, VNC images, and VNC 3D reformats was rated good (median 4 (4–5), 4 (3–4), 4 (3–5), respectively). Detection of an osseous defect was equal on 2D and 3D images (13/42, P > 0.99) with no difference for measurement of the glenoid diameter with mean 28.3 mm (± 2.8 mm) vs. 28.4 mm (± 2.9 mm) (P = 0.5), width of the glenoid defect with 3.2 mm (± 2.1 mm) vs. 3.1 mm (± 2.3 mm) (P = 0.84), surface area with 638.5 mm2 (± 127 mm2) vs. 640.8 mm2 (± 129.5 mm2) (P = 0.47), and surface area of the defect with 46.6 mm2 (± 44.3 mm2) vs. 47.2 mm2 (± 48.0 mm2) (P = 0.73), respectively. Conclusion DECT shoulder arthrography is feasible and allows successful iodine removal with generation of VNC images and accurate VNC 3D reformats of the glenoid for assessment of bone loss.


2022 ◽  
pp. 1-11
Author(s):  
Tao Wang ◽  
Yuxin Han ◽  
Liying Lin ◽  
Changlu Yu ◽  
Rong Lv ◽  
...  

BACKGROUND: Previous studies have shown that using some post-processing methods, such as nonlinear-blending and linear blending techniques, has potential to improve dual-energy computed (DECT) image quality. OBJECTIVE: To improve DECT image quality of hepatic portal venography (CTPV) using a new non-linear blending method with computer-determined parameters, and to compare the results to additional linear and non-linear blending techniques. METHODS: DECT images of 60 patients who were clinically diagnosed with liver cirrhosis were selected and studied. Dual-energy scanning (80 kVp and Sn140 kVp) of CTPV was utilized in the portal venous phase through a dual-source CT scanner. For image processing, four protocols were utilized including linear blending with a weighing factor of 0.3 (protocol A) and 1.0 (protocol B), non-linear blending with fixed blending width of 200 HU and set blending center of 150HU (protocol C), and computer-based blending (protocol D). Several image quality indicators, including signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and contrast of hepatic portal vein and hepatic parenchyma, were evaluated using the paired-sample t-test. A 5-grade scale scoring system was also utilized for subjective analysis. RESULTS: SNR of protocols A-D were 9.1±2.1, 12.1±3.0, 11.6±2.8 and 14.4±3.2, respectively. CNR of protocols A-D were 4.6±1.3, 8.0±2.3, 7.0±2.0 and 9.8±2.4, respectively. The contrast of protocols A-D were 37.7±11.6, 91.9±21.0, 66.2±19.0 and 107.7±21.3, respectively. The differences between protocol D and other three protocols were significant (P <  0.01). In subjective evaluation, the modes of protocols A, B, C, and D were rated poor, good, generally acceptable, and excellent, respectively. CONCLUSION: The non-linear blending technique of protocol D with computer-determined blending parameters can help improve imaging quality of CTPV and contribute to a diagnosis of liver disease.


Sign in / Sign up

Export Citation Format

Share Document