scholarly journals Advances in treatment of neurodegenerative diseases: Perspectives for combination of stem cells with neurotrophic factors

2020 ◽  
Vol 12 (5) ◽  
pp. 323-338 ◽  
Author(s):  
Jie Wang ◽  
Wei-Wei Hu ◽  
Zhi Jiang ◽  
Mei-Jiang Feng
Author(s):  
Minu Anoop ◽  
Indrani Datta

: Most conventional treatments for neurodegenerative diseases fail due to their focus on neuroprotection rather than neurorestoration. Stem cell‐based therapies are becoming a potential treatment option for neurodegenerative diseases as they can home in, engraft, differentiate and produce factors for CNS recovery. Stem cells derived from human dental pulp tissue differ from other sources of mesenchymal stem cells due to their embryonic neural crest origin and neurotrophic property. These include both dental pulp stem cells [DPSCs] from dental pulp tissues of human permanent teeth and stem cells from human exfoliated deciduous teeth [SHED]. SHED offer many advantages over other types of MSCs such as good proliferative potential, minimal invasive procurement, neuronal differentiation and neurotrophic capacity, and negligible ethical concerns. The therapeutic potential of SHED is attributed to the paracrine action of extracellularly released secreted factors, specifically the secretome, of which exosomes is a key component. SHED and its conditioned media can be effective in neurodegeneration through multiple mechanisms, including cell replacement, paracrine effects, angiogenesis, synaptogenesis, immunomodulation, and apoptosis inhibition, and SHED exosomes offer an ideal refined bed-to-bench formulation in neurodegenerative disorders. However, in spite of these advantages, there are still some limitations of SHED exosome therapy, such as the effectiveness of long-term storage of SHED and their exosomes, the development of a robust GMP-grade manufacturing protocol, optimization of the route of administration, and evaluation of the efficacy and safety in humans. In this review, we have addressed the isolation, collection and properties of SHED along with its therapeutic potential on in vitro and in vivo neuronal disorder models as evident from the published literature.


2021 ◽  
Vol 22 (9) ◽  
pp. 4334
Author(s):  
Katrina Albert ◽  
Jonna Niskanen ◽  
Sara Kälvälä ◽  
Šárka Lehtonen

Induced pluripotent stem cells (iPSCs) are a self-renewable pool of cells derived from an organism’s somatic cells. These can then be programmed to other cell types, including neurons. Use of iPSCs in research has been two-fold as they have been used for human disease modelling as well as for the possibility to generate new therapies. Particularly in complex human diseases, such as neurodegenerative diseases, iPSCs can give advantages over traditional animal models in that they more accurately represent the human genome. Additionally, patient-derived cells can be modified using gene editing technology and further transplanted to the brain. Glial cells have recently become important avenues of research in the field of neurodegenerative diseases, for example, in Alzheimer’s disease and Parkinson’s disease. This review focuses on using glial cells (astrocytes, microglia, and oligodendrocytes) derived from human iPSCs in order to give a better understanding of how these cells contribute to neurodegenerative disease pathology. Using glia iPSCs in in vitro cell culture, cerebral organoids, and intracranial transplantation may give us future insight into both more accurate models and disease-modifying therapies.


2007 ◽  
Vol 16 (1) ◽  
pp. 41-55 ◽  
Author(s):  
Federica Pisati ◽  
Patrizia Bossolasco ◽  
Mirella Meregalli ◽  
Lidia Cova ◽  
Marzia Belicchi ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Zaffar Equbal ◽  
Prakash N. Baligar ◽  
Madhulika Srivastava ◽  
Asok Mukhopadhyay

With no permanent cure for neurodegenerative diseases, the symptoms reappear shortly after the withdrawal of medicines. A better treatment outcome can be expected if the damaged neurons are partly replaced by functional neurons and/or they are repaired using trophic factors. In this regard, safe cell therapy has been considered as a potential alternative to conventional treatment. Here, we have described a two-stage culture process to differentiate Wharton Jelly mesenchymal stem cells (WJ-MSCs) into neuronal-like cells in the presence of various cues involved in neurogenesis. The fate of cells at the end of each stage was analyzed at the morphometric, transcriptional, and translational levels. In the first stage of priming, constitutively, wingless-activated WJ-MSCs crossed the lineage boundary in favor of neuroectodermal lineage, identified by the loss of mesenchymal genes with concomitant expression of neuron-specific markers, like SOX1, PAX6, NTRK1, and NEUROD2. Neuronal-like cells formed in the second stage expressed many mature neuronal proteins like Map2, neurofilament, and Tuj1 and possessed axon hillock-like structures. In conclusion, the differentiation of a large number of neuronal-like cells from nontumorigenic and trophic factors secreting WJ-MSCs promises the development of a therapeutic strategy to treat neurodegenerative diseases.


2015 ◽  
Vol 10 (12) ◽  
pp. 1910 ◽  
Author(s):  
Anandh Dhanushkodi ◽  
Christopher Shamir ◽  
Chaitra Venugopal

2012 ◽  
Vol 104 (1) ◽  
pp. 7-19 ◽  
Author(s):  
G. Gincberg ◽  
H. Arien-Zakay ◽  
P. Lazarovici ◽  
P. I. Lelkes

Sign in / Sign up

Export Citation Format

Share Document