scholarly journals Etude morphologique et essai d'interprétation de déformations chez Pseudotsuga menziesii, Picea sitchensis et Abies grandis

1973 ◽  
pp. 28 ◽  
Author(s):  
D.-G. STRULLU
2001 ◽  
Vol 79 (4) ◽  
pp. 389-397 ◽  
Author(s):  
Hugh J Barclay

Leaf angle distributions are important in assessing both the flexibility of a plant's response to differing daily and seasonal sun angles and also the variability in the proportion of total leaf area visible in remotely sensed images. Leaf angle distributions are presented for six conifer species, Abies grandis (Dougl. ex D. Don) Lindl., Thuja plicata Donn. ex D. Don, Tsuga heterophylla (Raf.) Sarg., Pseudotsuga menziesii (Mirb.) Franco, Picea sitchensis (Bong.) Carr. and Pinus contorta Dougl. ex Loud. var. latifolia. The leaf angles were calculated by measuring four foliar quantities, and then the distributions of leaf angles are cast in three forms: distributions of (i) the angle of the long axis of the leaf from the vertical for the range 0–180°; (ii) the angle of the long axis of the leaf for the range 0–90°; and (iii) the angle of the plane of the leaf for the range 0–90°. Each of these are fit to the ellipsoidal distribution to test the hypothesis that leaf angles in conifers are sufficiently random to fit the ellipsoidal distribution. The fit was generally better for planar angles and for longitudinal angles between 0° and 90° than for longitudinal angles between 0° and 180°. The fit was also better for Tsuga heterophylla, Pseudotsuga menziesii, Picea sitchensis, and Pinus contorta than for Abies grandis and Thuja plicata. This is probably because Abies and Thuja are more shade tolerant than the other species, and so the leaves in Abies and Thuja are preferentially oriented near the horizontal and are much less random than for the other species. Comparisons of distributions on individual twigs, whole branches, entire trees, and groups of trees were done to test the hypothesis that angle distributions will depend on scale, and these comparisons indicated that the apparent randomness and goodness-of-fit increased on passing to each larger unit (twigs up to groups of trees).Key words: conifer, leaf angles, ellipsoidal distribution.


Botany ◽  
2016 ◽  
Vol 94 (11) ◽  
pp. 1063-1074 ◽  
Author(s):  
David M. Holloway ◽  
Byron Brook ◽  
JooHyun Kang ◽  
Cameron Wong ◽  
Michael Wu

The number of cotyledons in angiosperm monocots and dicots is tightly constrained. But in the gymnosperm Pinaceae (pine family), which includes many of the conifers, cotyledon number (nc) can vary widely, commonly from 2 to 12. Conifer cotyledons form in whorled rings on a domed embryo geometry. We measured the diameter of embryos and counted the cotyledons to determine the radial positioning of the whorl and the circumferential spacing between cotyledons. Results were similar between Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), Sitka spruce (Picea sitchensis (L.) H.Karst.), and larch (Larix × leptoeuropaea, synonymous with L. × marschlinsii Coaz), indicating a common mechanism for cotyledon positioning in conifers. Disrupting transport of the growth regulator auxin (with 1-N-naphthylphthalamic acid (NPA)) led to cup-shaped embryos, indicating that whorl (ring) formation is separable from cotyledon patterning within the ring. NPA inhibits cotyledon outgrowth, but not the spacing (distance) between cotyledons. The NPA effect is direct; it does not operate indirectly on embryo size. These results support a hierarchical model for cotyledon positioning in conifers, in which a first stage (not requiring auxin transport) sets the whorl position, constraining the second stage (which requires auxin transport) to form cotyledons within this whorl. Similarly, recent studies in Arabidopsis have shown that different components of complex developmental patterns can have different transport properties; this aspect of patterning may be shared across plants.


1999 ◽  
Vol 77 (8) ◽  
pp. 1053-1076 ◽  
Author(s):  
H B Massicotte ◽  
R Molina ◽  
L E Tackaberry ◽  
J E Smith ◽  
M P Amaranthus

Seedlings of Abies grandis (Dougl.) Lindl. (grand fir), Lithocarpus densiflora (Hook. & Arn.) Rehd. (tanoak), Pinus ponderosa Dougl. ex Laws. (ponderosa pine), Pseudotsuga menziesii (Mirb.) Franco (Douglas-fir), and Arbutus menziesii Pursh (madrone) were planted in mixture and monoculture in soil collected from three adjacent forest sites in southwestern Oregon (a clearcut area, a 25-year-old Douglas-fir plantation, and a mature 90- to 160-year-old Douglas-fir - pine forest) to determine the effect of host tree diversity on retrieval of ectomycorrhizal morphotypes. In this greenhouse bioassay, 18 morphotypes of mycorrhizae were recognized overall from all soils with a total of 55 host-fungus combinations: 14 types with ponderosa pine, 14 with Douglas-fir, 10 with tanoak, 10 with grand fir, and 7 for madrone. Four genus-specific morphotypes were retrieved (three on ponderosa pine and one on Douglas-fir), even in mixture situations, demonstrating selectivity of some fungal propagules by their respective host. Five types were detected on all hosts, but not necessarily in soils from all sites. The remaining nine types were associated with two, three, or four hosts, which indicates a wide potential for interspecific hyphal linkages between trees. More morphotypes were retrieved from the monoculture treatments compared with the mixture treatments, although the differences were not significant. Several examples of acropetal replacement of one fungus by another (interpreted as succession) were recorded on all hosts during the course of the experiment. These results illustrate the importance of different host species in maintaining ectomycorrhizal fungus diversity, especially fungi with restricted host range, and the strong potential for fungal linkages between trees in forest ecosystems.Key words: fungal succession, fungal communities, compatibility, Arbutus menziesii, Pseudotsuga menziesii, Pinus ponderosa, Abies grandis, Lithocarpus densiflora.


2020 ◽  
Vol 29 (11) ◽  
pp. 1042
Author(s):  
Tyler R. Hudson ◽  
Ryan B. Bray ◽  
David L. Blunck ◽  
Wesley Page ◽  
Bret Butler

This work reports characteristics of embers generated by torching trees and seeks to identify the important physical and biological factors involved. The size of embers, number flux and propensity to ignite spot fires (i.e. number flux of ‘hot’ embers) are reported for several tree species under different combinations of number (one, three or five) and moisture content (11–193%). Douglas-fir (Pseudotsuga menziesii), grand fir (Abies grandis), western juniper (Juniperus occidentalis) and ponderosa pine (Pinus ponderosa) trees were evaluated. Embers were collected on an array of fire-resistant fabric panels and trays filled with water. Douglas-fir trees generated the highest average ember flux per kilogram of mass loss during torching, whereas grand fir trees generated the highest ‘hot’ ember flux per kilogram of mass loss. Western juniper produced the largest fraction of ‘hot’ embers, with ~30% of the embers generated being hot enough to leave char marks. In contrast, only 6% of the embers generated by ponderosa pine were hot enough to leave char marks. Results from this study can be used to help understand the propensity of different species of tree to produce embers and the portion of embers that may be hot enough to start a spot fire.


2003 ◽  
Vol 18 (4) ◽  
pp. 250-258
Author(s):  
Steve Bowers

Abstract This study documented and field-tested a simplified version of the Westside Grading Guidelines as published in the Official Rules Handbook by the Northwest Log Rules Advisory Group. A four-step dichotomous key was documented and field-tested to determine merchantable vs. nonmerchantable logs. The study also documented and field-tested an individual seven-step dichotomous log grading key for evaluating second-growth Douglas-fir (Pseudotsuga menziesii), Sitka spruce (Picea sitchensis), western hemlock (Tsuga heterophylla), and grand fir (Abies grandis) as derived from the Rules For Grading Logs section of the Official Rules Handbook. Results were compared with certified scalers employed by Yamhill Log Scaling & Grading Bureau and Columbia River Log Scaling & Grading Bureau. Eighty-four individuals measured the length, scaling diameter, determined merchantability versus nonmerchantability and assigned log grade for 440 logs. Results showed participants in the study correctly measuring log length 99% of time, scaling diameters were recorded correctly at an 89% rate, and merchantability and log grade at 98 and 97%, respectively. West. J. Appl. For. 18(4):250–258.


1994 ◽  
Vol 72 (11) ◽  
pp. 1635-1646 ◽  
Author(s):  
X. J. Li ◽  
P. J. Burton ◽  
C. L. Leadem

Pregermination stratification treatment was generally more important than the effects of light on seed germination by 14 conifer species and varieties native to British Columbia. Nevertheless, there were some strong species differences in the response of germination to light. Final germination percentage after 21 days (28 days for Abies spp.) for both stratified and unstratified seeds of Picea glauca, Picea sitchensis, and Tsuga heterophylla showed no response to light during germination. Seed germination by Abies grandis, Pinus contorta var. contorta, Pinus contorta var. latifolia, Pinus ponderosa, Pseudotsuga menziesii var. glauca, and Pseudotsuga menziesii var. menziesii responded positively to light if unstratified but was not significantly affected by light when stratified. For Thuja plicata seeds, germination responded positively to light regardless of stratification pretreatment. Light appeared to reduce germination of stratified seeds of Abies amabilis, Abies lasiocarpa, Larix occidentalis, and Pinus monticola, although stratification conditions for these species were suboptimal. The germination rate of stratified seeds of all species and unstratified seeds of most species was increased by light. Results showed no significant relationship between germination response to light and shade-tolerance ranking or mean seed weight of the species. In six seed lots of Pinus contorta var. latifolia, however, we detected a weak negative correlation between mean seed weight and unstratified light responsivity measured after 1 week but a significant positive correlation when measured after 3 weeks. Very low light levels in closed-canopy forests or in the forest floor may prolong tree seed germination but are unlikely to constrain final germination levels after most seeds have been naturally stratified by moist, cool winter conditions. The importance of differences in the rate and timing of tree seed germination under natural conditions remains to be demonstrated. Key words: conifer biology, forest regeneration, light response, lodgepole pine, Pinus contorta, seed germination, stratification.


1960 ◽  
Vol 38 (1) ◽  
pp. 87-91
Author(s):  
L. Gilbertson

Poria zonata Bres., a wood-rotting fungus known only from the western United States and British Columbia, is reported to be widely distributed within that area on recently fallen trees of Abies grandis, A. concolor, A. lasiocarpa, Larix occidentalis, Pseudotsuga menziesii, and Tsuga heterophylla. A description of the sporophores of the fungus, its cultural characteristics, and the white pocket rot caused by it are given.


2021 ◽  
Author(s):  
Nabila Rodríguez Valerón ◽  
Diego Prado Vásquez ◽  
Rasmus Munk

The Pinaceae family has traditionally been used as medicine, resorted to as a famine food and for ornamental purposes as Christmas trees. In the last few years numerous restaurants have been using different species of Pinaceae family as a garnish or an aromatic spice, using them in different culinary applications like oils and infusions to flavor dressings and broths. Abies grandis (Grand fir), Pseudotsuga menziesii (Douglas fir), Pinus sylvestris (Scots pine) and Picea abies (Norway spruce) were researched on taxonomy, habitats and non-edible uses, culinary traditions, health and nutritional properties, aroma profile. The main compounds in Pinaceae family are monoterpenes, oxygenated monoterpenes, sesquiterpenes, oxygenate sesquiterpenes, diterpenes and hydrocarbons, especially α-β-pinene, limonene, α-terpinene, and even bornyl acetate, responsible for aroma compounds such as citrusy-, woody-, herbal-, or piney aromas. Modern gastronomy uses, sensory analysis and culinary applications were applied for demonstrating the possibilities on modern culinary application in this novel yet traditional spice.


2017 ◽  
Vol 13 ◽  
pp. 115 ◽  
Author(s):  
Eliška Šmídová ◽  
Petr Kabele

An orthotropic failure criterion enhancing the Lourenco's criterion by a shear strength multiplier and a maximum shear strength upper bound has been recently proposed and validated for timber under tensile and shear loading by the authors. The paper discusses its applicability for predicting strength in comparison with Tsai-Hill criterion, Hankinson's and Hyperbolic formula applying the two above mentioned enhancements of the Lourenco's criterion. Experimental data available in the literature for off-axis tensile and shear test of Sitka spruce (Picea sitchensis Carr.), Katsura (Cercidiphyllurn japonicurn Sieb. and Zucc.), Douglas fir (Pseudotsuga menziesii), Douglas fir laminated veneer and Cupiúba (Goupia glabra) are used for the purpose of this study.


Sign in / Sign up

Export Citation Format

Share Document