Automotive Suspensions with Additional Spring in Series with Damper: Optimal Design by Analytical Formulae

Author(s):  
Liunan Yang ◽  
Kesavan Ramakrishnan ◽  
Giampiero Mastinu ◽  
Giorgio Previati ◽  
Massimiliano Gobbi
2021 ◽  
Vol 249 ◽  
pp. 12003
Author(s):  
Juan C. Grave ◽  
Cecilia I. Paulo ◽  
Horacio. A. Petit ◽  
E. Fabián Irassar

A nonlinear programming problem was developed for the separation and classification of Portland cement particles into different fractions through the optimal design of two cyclones classifier in series. The equations and restrictions considered included the global mass balances, the equations for the geometric design of the cyclones, the equations for the efficiency calculation, the operating limitations of the process and the pressure drops of the equipment. The results show that an increase on the particles cut size led to a greater dimensions cyclone, as expected. Moreover, fractional efficiencies obtained increase with the reduction of the cut size. The solids load effect is also evaluated, reductions of the solids feed by 50% of its maximum value does not result in a remarkably decrease of efficiencies values. The proposed model has provided useful information and constitutes a starting point for a better understanding of the overall separation process of multi-component Portland cement mixtures. It is a valuable tool for the correct design of this type of separators, given its versatility to optimize under different operating conditions and with different materials.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Toshihiko Asami

This paper considers the optimal design of double-mass dynamic vibration absorbers (DVAs) attached to an undamped single degree-of-freedom system. Three different optimization criteria, the H∞ optimization, H2 optimization, and stability maximization criteria, were considered for the design of the DVAs, and a performance index was defined for each of these criteria. First, the analytical models of vibratory systems with double-mass DVAs were considered, and seven dimensionless parameters were defined. Five of these parameters must be optimized to minimize or maximize the performance indices. Assuming that all dimensionless parameters are non-negative, the optimal value of one parameter for a double-mass DVA arranged in series (series-type DVA) was proven to be zero. The optimal adjustment conditions of the other four parameters were derived as simple algebraic formulae for the H2 and stability criteria and numerically determined for the H∞ criterion. For a double-mass DVA arranged in parallel (parallel-type DVA), all five parameters were found to have nonzero optimal values, and these values were obtained numerically by solving simultaneous algebraic equations. Second, the performance of these DVAs was compared with a single-mass DVA. The result revealed that for all optimization criteria, the performance of the series-type DVA is the best among the three DVAs and that of the single-mass DVA is the worst. Finally, a procedure for deriving the algebraic or numerical solutions for H2 optimization is described. The derivation procedure of other optimal solutions will be introduced in the future paper.


Sign in / Sign up

Export Citation Format

Share Document