Engine Start-Up Robust Control for a Power-Split Hybrid System Based on μ Synthesis Method

2021 ◽  
Vol 10 (1) ◽  
pp. 89-101
Author(s):  
Zhiguo Zhao ◽  
Jiaqi Fan ◽  
Mengna Li ◽  
Jing Fu
2019 ◽  
Vol 120 ◽  
pp. 365-377 ◽  
Author(s):  
Zhiguo Zhao ◽  
Lanxing Jiang ◽  
Chen Wang ◽  
Mengna Li

2021 ◽  
Vol 11 (4) ◽  
pp. 1846
Author(s):  
Yanzhao Su ◽  
Minghui Hu ◽  
Jin Huang ◽  
Ling Su ◽  
Datong Qin

Experimental research is essential in the development of a hybrid electric vehicle. In this study, a bench test was conducted for a compound power-split hybrid electric vehicle (PSHEV) to analyze the real dynamic characteristics of its components and the factors of system shock and vibration during the engine start-up process. Firstly, the mode switching process with an engine start-up was divided into four stages by the lever method. The basic control strategy of mode switching with engine start-up was formulated and tested on a bench test platform. Secondly, based on the bench test data, the output characteristics of the battery motor, engine, and driveshaft were analyzed in detail. The main variable parameters of the engine control unit were investigated in the engine start-up process. Ultimately, the results showed that the engine’s pulsating torque was the main reason for system jerk and vibration during the engine start-up process, and the excessive intake manifold pressure before the engine’s ignition was one of the main reasons for the large output torque ripple. When initiating the electric engine starting process, the jerk and vibration presented a wide fluctuation. The maximum value of the equivalent jerk was 92.12 m/s3, and the maximum value of the absolute value of the vibration acceleration was 4.077 m/s2.


2004 ◽  
Author(s):  
Fuyuan Yang ◽  
Jingyong Zhang ◽  
Qiang Han ◽  
Minggao Ouyang

Author(s):  
Jalu A. Prakosa ◽  
Edi Kurniawan ◽  
Suryadi ◽  
Bernadus H. Sirenden ◽  
Purwowibowo ◽  
...  

Author(s):  
Syed Adnan Qasim ◽  
M. Afzaal Malik

In the normal low-speed engine operation, elastohydrodynamic lubrication (EHL) of piston skirts and lubricant rheology reduce friction and prevent wear. In a few initial start up cycles, a very low engine speed and absence of EHL cause adhesive wear. This study models hydrodynamic and EHL of piston skirts in the initial very low cold engine start up speed by using a high viscosity lubricant. The 2-D Reynolds equation is solved and inverse solution technique is used to calculate the pressures and film thickness profiles in the hydrodynamic and EHL regimes, respectively. The work is extended to investigate the effects of three very low initial engine start up speeds on the transverse eccentricities of piston skirts, film thickness profiles and pressure fields in the hydrodynamic and EHL regimes. Despite using a viscous lubricant, thin EHL film profiles are generated at low start up speeds. This study suggests very low speed optimization in the cold initial engine start up conditions to prevent piston wear under isothermal conditions.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Liupeng He ◽  
Changgao Xia ◽  
Sida Chen ◽  
Jiwei Guo ◽  
Yi Liu

This paper is aimed to investigate the influence of dual-mass flywheel (DMF) kinetic parameters on driveline torsional vibration in engine start-up process, which prescribes the design requirements under start-up condition for DMF matching. On the basis of driveline excitation analysis during engine start-up, the analytical model of DMF driveline torsional vibration system is built and simulated. The vehicle start-up test is conducted and compared with the simulation results. On account of the partial nonstationary characteristic of driveline during start-up, the start-up process is separated into 3 phases for discussing the influence of DMF rotary inertia ratio, hysteresis torque, and nonlinear torsional stiffness on attenuation effect. The test and simulation results show that the DMF undergoes severe oscillation when driveline passes through resonance zone, and the research model is verified to be valid. The DMF design requirements under start-up condition are obtained: the appropriate rotary inertia ratio (the 1st flywheel rotary inertia-to-the 2nd flywheel rotary inertia ratio) is 0.7∼1.1; the interval of DMF small torsion angle should be designed as being with small damping, while large damping is demanded in the interval of large torsion angle; DMF should be equipped with low torsional stiffness when working in start-up process.


Sign in / Sign up

Export Citation Format

Share Document