Integration of Electromagnetic and Optical Motion Tracking Devices for Capturing Human Motion Data Woojin Park

1999 ◽  
Author(s):  
Charles Woolley ◽  
D. B. Chaffin ◽  
Ulrich Raschke ◽  
Xudong Zhang
2016 ◽  
Author(s):  
Jill Schmidt ◽  
Devin R. Berg

In the field of biomechanics, optical motion tracking systems are commonly used to record human motion and assist in surgical navigation. Recently, motion tracking systems have been used to track implant and bone motion on a micron-level. The present study evaluated four different Optotrak® motion tracking systems to determine the precision, repeatability and accuracy under static testing conditions. The distance between the camera systems and the rigid body, as well as the tilt angle of the rigid body, did affect the resulting precision, repeatability and accuracy of the camera systems. The precision and repeatability, calculated as the within-trial and between-trial standard deviations, respectively, were less than 30 µm; with some configurations producing precision and repeatability less than 1 µm. The accuracy was less than 0.53% of the total displacement for the in-plane motion and less than 1.56% of the total displacement for the out-of-plane motion.


Author(s):  
Sajeev C. Puthenveetil ◽  
Chinmay P. Daphalapurkar ◽  
Wenjuan Zhu ◽  
Ming C. Leu ◽  
Xiaoqing F. Liu ◽  
...  

To generate graphic simulation of human motion, marker-based optical motion capture technology is widely used because of the accuracy and reliability of motion data provided by this technology. However, tracking of human motion without markers is very desirable on the factory floor because the human operator does not need to wear a special suit mounted with markers and there is no physical interference with the manufacturing or assembly operation during the motion tracking. In this paper, we compare marker-based and marker-less motion capture systems. First, the operational principles of these two different types of systems are compared. Then the quality of motion data obtained by a marker-less system using Kinect is compared with that obtained by a marker-based system using Optitrack cameras. The comparison also includes the accuracy of body joint angles and variations in body segment lengths measured by the two different systems. Furthermore, we compare the human motion simulation developed in the Jack digital human modeling software using the data captured by these two systems when a person is performing a fastening operation on a physical mockup of the belly section of an aircraft fuselage.


2005 ◽  
Vol 14 (3) ◽  
pp. S32-S38 ◽  
Author(s):  
Katsuhisa Kanda ◽  
Yuji Miyamoto ◽  
Akihiro Kondo ◽  
Makoto Oshio

2018 ◽  
Vol 198 ◽  
pp. 04010
Author(s):  
Zhonghao Han ◽  
Lei Hu ◽  
Na Guo ◽  
Biao Yang ◽  
Hongsheng Liu ◽  
...  

As a newly emerging human-computer interaction, motion tracking technology offers a way to extract human motion data. This paper presents a series of techniques to improve the flexibility of the motion tracking system based on the inertial measurement units (IMUs). First, we built a most miniatured wireless tracking node by integrating an IMU, a Wi-Fi module and a power supply. Then, the data transfer rate was optimized using an asynchronous query method. Finally, to simplify the setup and make the interchangeability of all nodes possible, we designed a calibration procedure and trained a support vector machine (SVM) model to determine the binding relation between the body segments and the tracking nodes after setup. The evaluations of the whole system justify the effectiveness of proposed methods and demonstrate its advantages compared to other commercial motion tracking system.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Francesco Paparella ◽  
Satja Sivcev ◽  
Daniel Toal ◽  
John V. Ringwood

The measurement of the motion of a small-scale wave energy device during wave tank tests is important for the evaluation of its response to waves and the assessment of power production. Usually, the motion of a small-scale wave energy converter (WEC) is measured using an optical motion tracking system with high precision and sampling rate. However, the cost for an optical motion tracking system can be considerably high and, therefore, the overall cost for tank testing is increased. This paper proposes a low-cost capture system composed of an inertial measurement unit and ultrasound sensors. The measurements from the ultrasound sensors are combined optimally with the measurements from the inertial measurement unit through an extended Kalman filter (EKF) in order to obtain an accurate estimation of the motion of a WEC.


2006 ◽  
Vol 13 (9) ◽  
pp. 1093-1103 ◽  
Author(s):  
Christian Dold ◽  
Maxim Zaitsev ◽  
Oliver Speck ◽  
Evelyn A. Firle ◽  
Jürgen Hennig ◽  
...  

2020 ◽  
Vol 44 (2) ◽  
pp. 49-54 ◽  
Author(s):  
Brian P. McHugh ◽  
Amy M. Morton ◽  
Bardiya Akhbari ◽  
Janine Molino ◽  
Joseph J. Crisco

Sign in / Sign up

Export Citation Format

Share Document