Hydrogen Blended Natural Gas Operation of a Heavy Duty Turbocharged Lean Burn Spark Ignition Engine

Author(s):  
S. R. Munshi ◽  
C. Nedelcu ◽  
J. Harris ◽  
T. Edwards ◽  
J. Williams ◽  
...  
Author(s):  
Jinlong Liu ◽  
Cosmin E. Dumitrescu

Increased utilization of natural-gas (NG) in the transportation sector can decrease the use of petroleum-based fuels and reduce greenhouse-gas emissions. Heavy-duty diesel engines retrofitted to NG spark ignition (SI) can achieve higher efficiencies and low NOx, CO, and HC emissions when operated under lean-burn conditions. To investigate the SI lean-burn combustion phenomena in a bowl-in-piston combustion chamber, a conventional heavy-duty direct-injection CI engine was converted to SI operation by replacing the fuel injector with a spark plug and by fumigating NG in the intake manifold. Steady-state engine experiments and numerical simulations were performed at several operating conditions that changed spark timing, engine speed, and mixture equivalence ratio. Results suggested a two-zone NG combustion inside the diesel-like combustion chamber. More frequent and significant late burn (including double-peak heat release rate) was observed for advanced spark timing. This was due to the chamber geometry affecting the local flame speed, which resulted in a faster and thicker flame in the bowl but a slower and thinner flame in the squish volume. Good combustion stability (COVIMEP < 3 %), moderate rate of pressure rise, and lack of knocking showed promise for heavy-duty CI engines converted to NG SI operation.


Author(s):  
Jinlong Liu ◽  
Cosmin Emil Dumitrescu

Increased utilization of natural gas (NG) in the transportation sector can decrease the use of petroleum-based fuels and reduced greenhouse gas emissions. Heavy-duty diesel engines retrofitted to NG spark ignition (SI) can achieve higher efficiencies and low NOX, CO, and hydrocarbon (HC) emissions when operated under lean-burn conditions. To investigate the SI lean-burn combustion phenomena in a bowl-in-piston combustion chamber, a conventional heavy-duty direct-injection CI engine was converted to SI operation by replacing the fuel injector with a spark plug and by fumigating NG in the intake manifold. Steady-state engine experiments and numerical simulations were performed at several operating conditions that changed spark timing (ST), engine speed, and mixture equivalence ratio. Results suggested a two-zone NG combustion inside the diesel-like combustion chamber. More frequent and significant late-burn (including double-peak heat release rate) was observed for advanced ST. This was due to the chamber geometry affecting the local flame speed, which resulted in a faster and thicker flame in the bowl but a slower and thinner flame in the squish volume. Good combustion stability (COVIMEP < 3%), moderate rate of pressure-rise, and lack of knocking showed promise for heavy-duty CI engines converted to NG SI operation.


Author(s):  
Jinlong Liu ◽  
Cosmin E. Dumitrescu

Abstract Natural gas (NG) is an alternative combustible fuel for the transportation sectors due to its clean combustion, small carbon footprint, and, with recent breakthroughs in drilling technologies, increased availability and low cost. Currently, NG is better suited for spark-ignited (SI), as a gasoline replacement in conventional SI engines or as a diesel replacement in diesel engines converted to SI operation. However, the knowledge on the fundamentals of NG flame propagation at conditions representative of modern engines (e.g., at higher compression ratios and/or lean mixtures) is limited. Flame propagation inside an engine can be achieved by replacing the original piston with a see-through one. This study visualized flame activities inside the combustion chamber of an optically-accessible heavy-duty diesel engine retrofitted to NG SI operation to increase the understanding of combustion processes inside such converted engines. Recordings of flame luminosity throughout the combustion period at lean-burn operating conditions indicated that the fully-developed turbulent flame formed from several smaller-scale kernels. These small kernels varied with shapes and locations due to different flow motion around the spark location (including the effect of spark electrodes on the local flow separation), different local temperature, or different energy released in these regions. In addition, the turbulent flame was heavily wrinkled during propagation, despite it was grown from a relatively-circular kernel. Moreover, the intake swirl accelerated the flame propagation process while rotating the turbulent flame during its development. Furthermore, the flame propagation speed reduced dramatically when entering the squish region, while the direction from which the flame first touched the bowl edge changed with individual cycles. The results can help the CFD community to better develop RANS and/or LES simulations of such engines under lean-burn operating conditions.


Author(s):  
A. Ramesh ◽  
Mohand Tazerout ◽  
Olivier Le Corre

This work deals with the nature of cycle by cycle variations in a single cylinder, lean burn, natural gas fuelled spark ignition engine operated at a constant speed of 1500 rev/min under variable equivalence ratio, fixed throttle conditions. Cycle by cycle variations in important parameters like indicated mean effective pressure (IMEP), peak pressure, rate of pressure rise and heat release characteristics were studied. At the lean misfire limit there was a drastic increase in combustion duration. With mixtures leaner than the lean limit, good cycles generally followed poor cycles. However, the vice versa was not true. Cycles that had a high initial heat release rate lead to more complete combustion. A high rate of pressure rise led to a high IMEP. The IMEP of cycles versus their frequency of occurrence was symmetric about the average value when the combustion was good.


2003 ◽  
Author(s):  
A. Manivannan ◽  
P. Tamil Porai ◽  
S. Chandrasekaran ◽  
R. Ramprabhu

Author(s):  
Michael H. McMillian ◽  
Steven D. Woodruff ◽  
Steven W. Richardson ◽  
Dustin L. McIntyre

Evermore demanding market and legislative pressures require stationary lean-burn natural gas engines to operate at higher efficiencies and reduced levels of emissions. Higher in-cylinder pressures and leaner air/fuel ratios are required in order to meet these demands. Contemporary ignition systems, more specifically spark plug performance and durability, suffer as a result of the increase in spark energy required to maintain suitable engine operation under these conditions. This paper presents a discussion of the need for an improved ignition source for advanced stationary natural gas engines and introduces laser spark ignition as a potential solution to that need. Recent laser spark ignition engine testing with natural gas fuel including NOx mapping is discussed. A prototype laser system in constructed and tested and the results are discussed and solutions provided for improving the laser system output pulse energy and pulse characteristics.


2012 ◽  
Author(s):  
Payman Abbasi Atibeh ◽  
Peter A. Dennis ◽  
Pedro J. Orbaiz ◽  
Michael J. Brear ◽  
Harry C. Watson

2021 ◽  
pp. 146808742110344
Author(s):  
Qiao Huang ◽  
Jinlong Liu ◽  
Christopher Ulishney ◽  
Cosmin E Dumitrescu

The use of computational models for internal combustion engine development is ubiquitous. Numerical simulations using simpler to complex physical models can predict engine’s performance and emissions, but they require large computational capabilities. By comparison, statistical methodologies are more economical tools in terms of time and resources. This paper investigated the use of an artificial neural network algorithm to simulate the nonlinear combustion process inside the cylinder. Three engine control variables (i.e. spark timing, mixture equivalence ratio, and engine speed) were set as the model inputs. Outputs included peak cylinder pressure and its location, maximum pressure rise rate, indicated mean effective pressure, ignition lag, combustion phasing, burn duration, exhaust temperature, and engine-out emissions (i.e. nitrogen oxides, carbon monoxide, and unburned hydrocarbons). Eighty percent of the experimental data from a heavy-duty natural gas spark ignition engine were utilized to train the model. The perceptions accurately learned the combustion characteristics and predicted engine responses with acceptable errors, evidenced by close-to-unity coefficient of determination and close-to-zero root-mean-square error. Moreover, the regressors captured the effect of key operating variables on the engine response, suggesting the well-trained models successfully identified the complex relationships and can help assist engine analysis. Overall, the neural network algorithm was appropriate for the application investigated in this study.


Fuel ◽  
2020 ◽  
Vol 282 ◽  
pp. 118868 ◽  
Author(s):  
Xiongbo Duan ◽  
Banglin Deng ◽  
Yiqun Liu ◽  
Shunzhang Zou ◽  
Jingping Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document