The Use of Variable Geometry Sprays With Low Pressure Injection for Optimization of Diesel HCCI Engine Combustion

Author(s):  
Y. Ra ◽  
Rolf D. Reitz
2002 ◽  
Vol 52 (4-5) ◽  
pp. 360-365 ◽  
Author(s):  
M Rei ◽  
E.C Milke ◽  
R.M Gomes ◽  
L Schaeffer ◽  
J.P Souza

2007 ◽  
Vol 336-338 ◽  
pp. 1012-1016
Author(s):  
Yin Wu ◽  
Wen Jie Si ◽  
He Zhuo Miao

A new dewaxing method for low-pressure injection molded ceramics is presented. Supercritical extraction with carbon dioxide was used to remove paraffin wax from the ceramic green parts. The composition of organic additives for low-pressure injection molding feedstock and the extraction condition for the green parts were investigated. Moreover, the properties of sintered ceramic samples dewaxed by supercritical carbon dioxide were compared with those by thermal dewaxing. The results show that the new binder system containing 50wt% paraffin wax, 35% bee wax and 15% stearic acid fulfills the requirements of both low-pressure injection molding feedstocks and supercritical dewaxing, where the feedstock has high fluidity, low viscosity and quick solidification. The efficient extraction condition for supercritical dewaxing from the green parts is at 30MPa pressure and 45°C. Under this condition, defect free ceramic green parts can be obtained. Dewaxing methods have significant influence on the properties of sintered parts. The mechanical properties of the sintered sample can be improved by supercritical dewaxing. With this method, the bending strength of sintered samples (σ = 331.6 MPa) is higher than that obtained by thermal treatment (σ = 312.3MPa). The sintered samples dewaxed by supercritical CO2 have shown the property of higher density and less distortion compared to the thermal dewaxing method. Moreover, with supercritical extraction the dewaxing time can be reduced to about one tenth of the time required by thermal dewaxing.


Author(s):  
D Y Suslov ◽  
R S Ramazanov ◽  
D O Temnikov ◽  
I V Lobanov

Author(s):  
Zhongjie Zhang ◽  
Ruilin Liu ◽  
Guangmeng Zhou ◽  
Chunhao Yang ◽  
Surong Dong ◽  
...  

A variable geometry turbocharger in series with a variable geometry turbocharger (Twin-VGT) system was designed to improve engine power at high altitudes. The influence of altitudes on the performance of the Twin-VGT system was investigated in the perspective of available exhaust energy. The interaction between exhaust flow characteristics of Twin-VGT and openings of Twin-VGT vanes was theoretically analyzed at different altitudes. Meanwhile, a model of a diesel engine matched with the Twin-VGT system was built to study the matching performance of the Twin-VGT system with engine at different altitudes. The optimal opening maps of both high-pressure and low-pressure VGT vanes at high altitudes were obtained to achieve the maximum engine power. The results showed that the optimal openings of high-pressure and low-pressure VGT vanes decreased with increase in altitudes. The operating points of the two-stage compressors located at the high efficiency region and the compressor efficiency region both exceeded 62% at different altitudes. The global expansion ratio increased with increase in altitudes and reached 4.9 at 5500 m. Compared with the VGT in series with a fixed geometry turbocharger on testing bed, exhaust energy of Twin-VGT turbines at low speeds was utilized reasonably and global pressure ratio increased by 0.69–0.94, while brake-specific fuel consumption decreased by 11.24–33.62% under low speeds above altitudes of 2500 m.


Fuel ◽  
2013 ◽  
Vol 113 ◽  
pp. 617-624 ◽  
Author(s):  
Jinyoung Jang ◽  
Youngjae Lee ◽  
Chongpyo Cho ◽  
Youngmin Woo ◽  
Choongsik Bae

Sign in / Sign up

Export Citation Format

Share Document