Evaluation of a Narrow Spray Cone Angle, Advanced Injection Timing Strategy to Achieve Partially Premixed Compression Ignition Combustion in a Diesel Engine

Author(s):  
Guntram A. Lechner ◽  
Timothy J. Jacobs ◽  
Christos A. Chryssakis ◽  
Dennis N. Assanis ◽  
Robert M. Siewert

In this world, the population is increased and the number of vehicles increased. Not only population the pollution is increased lot by vehicles in the world harmful pollutant is realized from the vehicles like CO, HC, NOx and smoke particulates. It is inevitable to find some new technology, which increases the better performance and emission characteristics. Partially premixed compression ignition (PCCI) is the best technology for the reducing of harmful pollution in the vehicle, which uses the diesel as fuel it, gives the advantages of both CI and SI engine. This paper investigates the performance and emission characteristics of partially premixed diesel engine. Diesel engine has two injectors of port fuel injector (PFI) and direct injector (DI) to inject the fuel in different timing and electrical control unit (ECU) passes the power to PFI; it can control the injection timing and increases the fuel content from the fuel pump. The main aim in this paper is studied is effect of partially premixed ratio, performance of engine and emission characteristics of diesel engine


2014 ◽  
Vol 984-985 ◽  
pp. 932-937 ◽  
Author(s):  
Palani Raghu ◽  
M. Senthamil Selvan ◽  
K. Pitchandi ◽  
N. Nallusamy

— The spray characteristic of the injected fuel is mainly depends upon fuel injection pressure, temperature, ambient pressure, fuel viscosity and fuel density. An experimental study was conducted to examine the effect of injection pressure on the spray was injected into direct injection (DI) diesel engine in the atmospheric condition. In Diesel engine, the window of 20 mm diameter hole and the transparent quartz glass materials were used for visualizing spray characteristics of combustion chamber at right angle triangle position. The varying Injection pressure of 180 - 240 bar and the engine was hand cranked for conducting the experiments. Spray characteristics for Jatropha oil methyl ester (JOME) and diesel were studied experimentally. Spray tip penetration and spray cone angle were measured in a combustion chamber of Direct Injection diesel engine by employing high speed Digital camera using Mie Scattering Technique and ImageJ software. The study shows the JOME gives longer spray tip penetration and smaller spray cone angle than those of diesel fuels. The Spray breakup region (Reynolds number, Weber number), Injection velocity and Sauter Mean Diameter (SMD) were determined for diesel and JOME. SMD decreases for JOME than diesel and the Injection velocity, Reynolds Number, Weber Number Increases for JOME than diesel.


2019 ◽  
pp. 146808741986701 ◽  
Author(s):  
Santiago Molina ◽  
Antonio García ◽  
Javier Monsalve-Serrano ◽  
David Villalta

From the different power plants, the compression ignition diesel engines are considered the best alternative to be used in the transport sector due to its high efficiency. However, the current emission standards impose drastic reductions for the main pollutants, that is, NO x and soot, emitted by this type of engines. To accomplish with these restrictions, alternative combustion concepts as the premixed charge compression ignition are being investigated nowadays. The objective of this work is to evaluate the impact of different fuel injection strategies on the combustion performance and engine-out emissions of the premixed charge compression ignition combustion regime. For that, experimental measurements were carried out in a single-cylinder medium-duty compression ignition diesel engine at low-load operation. Different engine parameters as the injection pattern timing, main injection timing and main injection fuel quantity were sweep. The best injection strategy was determined by means of a methodology based on the evaluation of a merit function. The results suggest that the best injection strategy for the low-load premixed charge compression ignition operating condition investigated implies using a high injection pressure and a triple-injection event with a delayed main injection with almost 15% of the total fuel mass injected.


2018 ◽  
Author(s):  
Meng Tang ◽  
Yuanjiang Pei ◽  
Yu Zhang ◽  
Tom Tzanetakis ◽  
Michael Traver ◽  
...  

2021 ◽  
pp. 146808742110527
Author(s):  
Amir Hamzeh Farajollahi ◽  
Reza Firuzi ◽  
Mohsen Rostami ◽  
Farid Bagherpor

In this article, the effects of increasing spray cone angle and turbulence intensity on the performance and emission of heavy-duty diesel engine has been examined in two separate stages using AVL-Fire CFD code. First, the injector and its spray have been simulated with various geometries. In this step, the Eulerian-Eulerian model has been applied for injector simulation and the Eulerian -Lagrangian model has been applied for spray simulation. The numerical results of this step indicate that creating swirly flow inside the nozzle decreasing penetration length while, fuel spray cone angle increasing during the injection process. In the subsequent step, the heavy-duty diesel engine has been simulated with its conventional and different nozzle hole geometries. In this step, the Eulerian-Lagrangian model has been applied to simulate the engine cycle. The numerical results of this step show that the nozzle with spiral rifling like guides has better performance and lower emission compared to other nozzle geometries. In this case, the fuel consumption is decreasing 32% than cylindrical nozzle hole, while the engine power and its torque increasing 63%. In addition, the amount of nitrogen oxide (NOx) and carbon monoxide (CO) for the spiral convergent conical nozzle geometry reducing 15% and 30% respectively than cylindrical nozzle hole while engine has no soot emission problem. Diesel injector and engine CFD results and experimental data have been validated from previous researches.


The in-cylinder flow dramatically affects combustion performance and emission characteristics of a compression ignition engine. The spray cone angle is among the most critical factors affecting mixture formation, combustion and emissions in a direct injection diesel engine. We have used three-dimensional computational investigations on spray cone angle-induced emission pattern of V-type DI engine under AVL-FIRE and ESE simulation interface. Four spray cone angles of 120°, 130°, 140°, and 150° were used for simulation purpose. The findings from the three-dimensional AVL-FIRE simulation confirm the influence of spray angle on optimal air-fuel mixing and, hence, combustion. Spray cone angle of 140° gave better engine performance in terms of lower CO and soot emission, but increased NO emission was observed due to improved combustion.


Author(s):  
H. Koten ◽  
M. Yilmaz ◽  
M. Z. Gul

The goal of this study is to find out effects of the injection parameters on the combustion process for a single cylinder of a nine-liter six cylinder diesel engine. Partially premixed compression ignition (PPCI) cases are compared for improvements on the combustion chamber design of the engine to achieve near zero particulate matter (PM) and NOx emissions for homogenous charge compression ignition (HCCI) engine. Therefore combustion simulations of the engine have been performed to find out flow development and emission generation in the cylinder. Moreover, the interaction of air motion with high-pressure fuel spray injected directly into the cylinder has also been analyzed. Finally, a comparison has been made considering the performance of the engine for various configurations such as compression ratio, injection timing, cone angle and bowl geometry. The results are widely in agreement qualitatively with the previous similar experimental and computational studies in the literature.


2016 ◽  
Vol 30 (5) ◽  
pp. 4331-4345 ◽  
Author(s):  
Chenxi Sun ◽  
Dongil Kang ◽  
Stanislav V. Bohac ◽  
Andre L. Boehman

Sign in / Sign up

Export Citation Format

Share Document