Finite Element Simulation of the Bending and Springback Behavior of Advanced High Strength Steels (DP780)

2006 ◽  
Author(s):  
Timothy Lim ◽  
Mukesh Jain
2020 ◽  
Vol 1009 ◽  
pp. 95-100
Author(s):  
Siam Thongnak ◽  
Tanongsak Yingnakorn ◽  
Loeslakkhana Sriklang ◽  
Sakhob Khumkoa

Advanced High-strength steels (AHSS) has widely application in automotive due to their high tensile strength and remarkable ductility. These good mechanical performances are strongly influenced by the processing and final microstructure. This paper performed Deformation Dilatometer and finite element simulation to study the effect of hot rolling parameters such as strain, cooling rate, and holding time at constant temperature on the microstructure formation of Nb-V low carbon microalloyed steel grade. It found that increasing deformation degree increased the volume fraction of ferrite, both of deformation dilatometer and finite element simulation give a similar trend of effects of hot rolling parameters on evolution of volume fraction of ferrite. These results give an insight for industrial application.


2011 ◽  
Vol 189-193 ◽  
pp. 2144-2147 ◽  
Author(s):  
Li Min Wang ◽  
Tian Rui Zhou ◽  
Li Juan Wang ◽  
Xiao Ling Yang

Hot stamping represents an innovative manufacturing process for forming of advanced high strength steels, implying a sheet at austenite temperature being rapidly cooled down and formed into a die at the same time (quenching). This affords the opportunity to manufacture components with complex geometric shapes, high strength and a minimum of springback which currently find applications as crash relevant components in the automotive industry. With regard to the numerical modeling of the process, the knowledge of thermal and thermo-mechanical properties of the material is required. The material model under hot stamping condition of advanced high strength steel should be set up. The Finite Element Analysis is an essential precondition for a good process design including all process parameters. This paper presents the finite element simulation of a hot stamping process and describes a number of procedures for the simulation of hot stamping. In addition, the development direction is pointed out at the end of this paper.


Author(s):  
Mohammad Mehdi Kasaei ◽  
Marta C Oliveira

This work presents a new understanding on the deformation mechanics involved in the Nakajima test, which is commonly used to determine the forming limit curve of sheet metals, and is focused on the interaction between the friction conditions and the deformation behaviour of a dual phase steel. The methodology is based on the finite element analysis of the Nakajima test, considering different values of the classic Coulomb friction coefficient, including a pressure-dependent model. The validity of the finite element model is examined through a comparison with experimental data. The results show that friction affects the location and strain path of the necking point by changing the strain rate distribution in the specimen. The strain localization alters the contact status from slip to stick at a portion of the contact area from the pole to the necking zone. This leads to the sharp increase of the strain rate at the necking point, as the punch rises further. The influence of the pressure-dependent friction coefficient on the deformation behaviour is very small, due to the uniform distribution of the contact pressure in the Nakajima test. Moreover, the low contact pressure range attained cannot properly replicate real contact condition in sheet metal forming processes of advanced high strength steels.


Author(s):  
Faycal Ben-Yahia ◽  
James A. Nemes ◽  
Farid Hassani

An experimental and numerical study was performed to evaluate the crashworthiness of several advanced high strength steels. The behavior of two Dual Phase (DP) steels and an HSLA steel are compared by examining the crush response of longeron column specimens, experimentally and computationally. The closed section columns, fabricated by spot welding formed channel sections, in both single hat and double hat configurations were exposed to 182 kg and 454 kg axial impacts at different velocities. Final column height and impact force history were recorded and compared with results of finite element simulation of the columns. Good agreement was found between experiments and computations.


2021 ◽  
Vol 1032 ◽  
pp. 172-177
Author(s):  
Xiao Da Li ◽  
Xiang Hui Zhan

The finite element simulation technology can provide strong support for the optimization of processing technology and the treatment of detailed problems in the processing process. Two finite element methods applied to hot forming of high-strength steel plates are introduced, namely the incremental method and the deformation method. Two methods are used for simulation calculations. The finite element simulation based on incremental theory has high accuracy and requires more complete mold and process information. It is mainly used in the middle and late stages of product and mold design. And the finite element simulation based on deformation theory have fast calculation speeds and are mainly used in the early stages of product and mold design. Both types of methods have high practical value.


Author(s):  
Suleyman Kilic ◽  
Fahrettin Ozturk

Automotive manufacturers always seek high strength and high formability materials for automotive bodies. Advanced high strength steels (AHSS) are excellent candidates for this purpose. These steels generally show a reasonable degree of formability, in addition to their high strength. One particular type is the twinning-induced plasticity (TWIP) steel, which is a high manganese austenite steel, and represents a second generation in AHSS. In this study, comprehensive deformation analysis of TWIP900CR steel including tensile, bending, Erichsen, and deep drawing of cylindrical cups tests is made. Finite element simulation of U and V shaped bending processes is also performed. Results indicate that the TWIP steel has good mechanical properties and high formability. However, springback is quite significant. The coining force should be considered in order to reduce the amount of springback. For springback prediction, it is found that the Yld2000-2d material model has better prediction capability than the Hill48 model.


Sign in / Sign up

Export Citation Format

Share Document