Numerical Simulation and Experimental Study of Mixture Formation and Combustion Process in a DI Diesel Engine

2007 ◽  
Author(s):  
Xiuyong Shi ◽  
Guoxiang Li ◽  
Lei Zhou
2012 ◽  
Vol 476-478 ◽  
pp. 448-452
Author(s):  
Jun Zhang ◽  
Chang Pu Zhao ◽  
Nai Zhuan Chen ◽  
Da Lu Dong ◽  
Bo Zhong

Diesel spray characteristics are closely related to the combustion of the engine where the spray tip penetration and the fuel atomization play a key role especially for direct injection (DI) diesel engine. With different nozzles, the fuel atomization and evaporation will be different thereby affecting the combustion and emission characteristics. A three-dimensional model is built based on the parameters of a DI diesel engine, and its validation is also validated. Three nozzle-hole layouts are designed in this research, including the conventional hole, multi-hole, and group-hole. The spray characteristics and combustion process are studied with three different nozzle-hole layouts by the way of numerical simulation. Further more, the effect of inter-hole spacing of group-hole nozzle on the evaporation rate and combustion process is researched here.


2021 ◽  
Vol 220 ◽  
pp. 106901
Author(s):  
Ahmad O. Hasan ◽  
Ahmed I. Osman ◽  
Ala'a H. Al-Muhtaseb ◽  
Hani Al-Rawashdeh ◽  
Ahmad Abu-jrai ◽  
...  

2007 ◽  
Author(s):  
Alain Maiboom ◽  
Xavier Tauzia ◽  
Jean-François Hétet ◽  
Mickaël Cormerais ◽  
Mourad Tounsi ◽  
...  

Author(s):  
Carl Hergart ◽  
Norbert Peters

Abstract Due to the wide spectrum of turbulent and chemical length- and time scales occurring in a HSDI diesel engine, capturing the correct physics and chemistry underlying combustion poses a tremendous modeling challenge. The processes related to the two-phase flow in a DI diesel engine add even more complexity to the total modeling effort. The Representative Interactive Flamelet (RIF) model has gained widespread attention owing to its ability of correctly describing ignition, combustion and pollutant formation phenomena. This is achieved by incorporating very detailed chemistry for the gas phase as well as the soot particle growth and oxidation, without imposing any significant computational penalty. The model, which is based on the laminar flamelet concept, treats a turbulent flame as an ensemble of thin, locally one-dimensional flame structures, whose chemistry is fast. A potential explanation for the significant underprediction of part load soot observed in previous studies applying the model is the neglect of wall heat losses in the flamelet chemistry model. By introducing an additional source term in the flamelet temperature equation, directly coupled to the wall heat transfer predicted by the CFD-code, flamelets exposed to walls are assigned heat losses of various magnitudes. Results using the model in three-dimensional simulations of the combustion process in a small-bore direct injection diesel engine indicate that the experimentally observed emissions of soot may have their origin in flame quenching at the relatively cold combustion chamber walls.


2018 ◽  
Vol 234 ◽  
pp. 03007
Author(s):  
Plamen Punov ◽  
Tsvetomir Gechev ◽  
Svetoslav Mihalkov ◽  
Pierre Podevin ◽  
Dalibor Barta

The pilot injection strategy is a widely used approach for reducing the noise of the combustion process in direct injection diesel engines. In the last generation of automotive diesel engines up to several pilot injections could occur to better control the rate of heat release (ROHR) in the cylinder as well as the pollutant formation. However, determination of the timing and duration for each pilot injection needs to be precisely optimised. In this paper an experimental study of the pilot injection strategy was conducted on a direct injection diesel engine. Single and double pilot injection strategy was studied. The engine rated power is 100 kW at 4000 rpm while the rated torque is 320 Nm at 2000 rpm. An engine operating point determined by the rotation speed of 1400 rpm and torque of 100 Nm was chosen. The pilot and pre-injection timing was widely varied in order to study the influence on the combustion process as well as on the fuel consumption.


2006 ◽  
Author(s):  
J. Patterson ◽  
M. G. Hassan ◽  
A. Clarke ◽  
G. Shama ◽  
K. Hellgardt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document