Using Large Eddy Simulation for Studying Mixture Formation and Combustion Process in a DI Diesel Engine

Author(s):  
Raouf Mobasheri ◽  
Zhijun Peng
2020 ◽  
pp. 146808742091034
Author(s):  
Jann Koch ◽  
Christian Schürch ◽  
Yuri M Wright ◽  
Konstantinos Boulouchos

Fuels based on admixtures of methane/natural gas and hydrogen are a promising way to reduce CO2 emissions of spark ignition engines and increase their efficiency. A lot of work was conducted experimentally, whereas only limited numerical work is available in the context of three-dimensional modelling of the full engine cycle. This work addresses this fact by proposing a reactive computational fluid dynamics modelling framework to consider the effects of hydrogen addition on the combustion process. Part I of this two-part study focuses on the modelling and crucial considerations in order to predict the mean cycle based on the G-equation combustion model using the Reynolds-averaged Navier–Stokes equations. There, the effect of increased burning speed was globally captured by increasing the flame speed coefficient A, appearing in the considered flame speed closure. The proposed simplified modelling of the early flame stage proved to be robust for the conducted hydrogen variation from 0 to 50 vol% H2 for stoichiometric and lean operation. Scope of this work, Part II, are cyclic fluctuations and the hydrogen influence thereon using large eddy simulation and the proposed modelling framework. The model is probed towards its capabilities to predict the fluctuation of the combustion process for 0 and 50 vol% H2 and correlations influencing the observed peak pressure of the individual cycle are presented. It is shown that the considered approach is capable to reproduce the cyclic fluctuations of the combustion process under the influence of hydrogen addition as well as lean operation. The importance of the early flame phase with respect to arising fluctuations is highlighted as well as the contribution of the resolved scales in terms of the flame front wrinkling.


Author(s):  
Florent Lacombe ◽  
Yoann Méry

This article focuses on combustion instabilities (CI) driven by entropy fluctuations which is of great importance in practical devices. A simplified geometry is introduced. It keeps the essential features of an aeronautical combustion chamber (swirler, dilution holes, and outlet nozzle), while it is simplified sufficiently to ease the analysis (rectangular vane, one row of holes of the same diameter, no diffuser at the inlet of the chamber, and circular nozzle at the outlet). A large eddy simulation (LES) is carried out on this geometry and the limit cycle of a strong CI involving the convection of an entropy spot is obtained. The behavior of the instability is analyzed using phenomenological description and classical signal analysis. One shows that the system can be better described by considering two reacting zones: a rich mainly premixed flame is located downstream of the swirler and an overall lean diffusion flame is stabilized next to the dilution holes. In a second step, dynamic mode decomposition (DMD) is used to visualize, analyze, and model the complex phasing between different processes affecting the reacting zones. Using these data, a zero-dimensional (0D) modeling of the premixed flame and of the diffusion flame is proposed. These models provide an extended understanding of the combustion process in an aeronautical combustor and could be used or adapted to address mixed acoustic-entropy CI in an acoustic code.


2011 ◽  
Vol 27 (4) ◽  
pp. 519-530 ◽  
Author(s):  
Lei Zhou ◽  
Mao-Zhao Xie ◽  
Ming Jia ◽  
Jun-Rui Shi

2021 ◽  
Vol 33 (10) ◽  
pp. 105107
Author(s):  
Xu Wen ◽  
Sandro Gierth ◽  
Martin Rieth ◽  
Jacqueline H. Chen ◽  
Christian Hasse

Author(s):  
Florent Lacombe ◽  
Yoann Mery

This article focuses on Combustion Instabilities (CI) driven by entropy fluctuations which is of great importance in practical devices. A simplified geometry is introduced. It keeps the essential features of an aeronautical combustion chamber (swirler, dilution holes, outlet nozzle) while it is simplified sufficiently to ease the analysis (rectangular vane, one row of holes of the same diameter, no diffuser at the inlet of the chamber, circular nozzle at the outlet). A Large Eddy Simulation (LES) is carried out on this geometry and the limit cycle of a strong CI involving the convection of an entropy spot is obtained. The behavior of the instability is analyzed using phenomenological description and classical signal analysis. One shows that the system can be better described by considering two reacting zones: a rich mainly premixed flame is located downstream of the swirler and an overall lean diffusion flame is stabilized next to the dilution holes. In a second step, Dynamic Mode Decomposition (DMD) is used to visualize, analyze and model the complex phasing between the different processes affecting the reacting zones. Using these data, a 0D modeling of the premixed flame and of the diffusion flame is proposed. These models provides an extended understanding of the combustion process in an aeronautical combustor and could be used or adapted to address mixed acoustic-entropy CI in an acoustic code.


Sign in / Sign up

Export Citation Format

Share Document