Volume 2: In-Cylinder Processes: Fuel Spray, Flow, Ignition, Combustion, and Emission Formation
Latest Publications


TOTAL DOCUMENTS

14
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791880111

Author(s):  
M. Y. E. Selim ◽  
S. M. S. Elfeky

Abstract An experimental investigation has been carried out to study the effects of using water / diesel emulsion fuel in an indirect injection diesel engine on the heat flux crossing liner and cylinder head, thermal loading and metal temperature distribution. A single cylinder precombustion chamber diesel engine has been used in the present work. The engine was instrumented for performance, metal temperature and heat flux measurements. The pure gas oil fuel and different ratios of water / diesel emulsion were used and their effects on the heat flux level and the injector tip temperature are studied. Two correlation were found for the heat flux crossing the liner and the cylinder head at various water / diesel emulsion ratios, fuelling rate and thermocouple probe locations. It was found that the addition of water to diesel fuel, to control the nitrogen oxides emissions, has great influence on reducing die heat flux, the metal temperatures and thermal loading of combustion chamber components.


Author(s):  
Ki Hyung Lee ◽  
Chang Sik Lee ◽  
Hyun Jong Park ◽  
Dae Sik Kim

Abstract It has known that the in-cylinder flow field has a significant effect on the engine combustion. Especially, the turbulence scale at the ignition toning plays an important role in enhancing propagation speed of initial flame. Thus, in this study, various flow fields such as tumble and swirl flows were generated by intake flow control valves. The effects of tumble and swirl flows on the turbulence scale were experimentally investigated in a 4-valve S.I. engine. For the investigation of the flow field, the single frame PTV and the two color PIV techniques were developed to clarify in-cylinder flow pattern during intake stroke and turbulence intensity near the spark plug during compression stroke, respectively. The flame propagation was visualized by an ICCD camera and its images were analyzed to compare the flow field.


Author(s):  
Carl Hergart ◽  
Norbert Peters

Abstract Due to the wide spectrum of turbulent and chemical length- and time scales occurring in a HSDI diesel engine, capturing the correct physics and chemistry underlying combustion poses a tremendous modeling challenge. The processes related to the two-phase flow in a DI diesel engine add even more complexity to the total modeling effort. The Representative Interactive Flamelet (RIF) model has gained widespread attention owing to its ability of correctly describing ignition, combustion and pollutant formation phenomena. This is achieved by incorporating very detailed chemistry for the gas phase as well as the soot particle growth and oxidation, without imposing any significant computational penalty. The model, which is based on the laminar flamelet concept, treats a turbulent flame as an ensemble of thin, locally one-dimensional flame structures, whose chemistry is fast. A potential explanation for the significant underprediction of part load soot observed in previous studies applying the model is the neglect of wall heat losses in the flamelet chemistry model. By introducing an additional source term in the flamelet temperature equation, directly coupled to the wall heat transfer predicted by the CFD-code, flamelets exposed to walls are assigned heat losses of various magnitudes. Results using the model in three-dimensional simulations of the combustion process in a small-bore direct injection diesel engine indicate that the experimentally observed emissions of soot may have their origin in flame quenching at the relatively cold combustion chamber walls.


Author(s):  
P. A. Hutchison ◽  
R. B. Wicker

Abstract For two production DISI fuel injectors, flow visualization and particle image velocimetry (PIV) were utilized to illustrate the effect of fuel rail pressure and in-cylinder density (using in-cylinder pressure) on instantaneous fuel spray structure. Studies were performed within a non-motored research cylinder for two fuel rail pressures (3 MPa and 5 MPa) and two in-cylinder pressures (2 atm and 6 atm). Instantaneous flow visualization demonstrated the effects of changes in fuel rail pressure and in-cylinder density on transient spray structure. Increased fuel rail pressure resulted in increased narrowing of the spray cross-section and increased spray penetration distance. Increased in-cylinder density produced sprays with increased narrowing of the spray cross-section and shorter penetration distances. Spray velocities were shown to increase with increased fuel rail pressure and decrease with increased in-cylinder density.


Author(s):  
Yoshiyuki Kidoguchi ◽  
Michiko Sanda ◽  
Kei Miwa

Abstract This study investigated the effect of combustion chamber geometry and initial mixture distribution on combustion process in a direct-injection diesel engine by means of experiment and CFD calculation. The high squish combustion chamber with squish lip could produce simultaneous reduction of NOx and particulate emissions with retarded injection timing in the real engine experiment. According to the CFD computation, the high squish combustion chamber with central pip is effective to continue combustion under the squish lip until the end of combustion and the combustion region forms rich and high turbulence atmosphere, which reduces NOx emissions. This chamber can also reduce initial burning because combustion continues under the squish lip. The CFD computation is also carried out in order to investigate the effect of initial mixture distribution on combustion process. The results suggest that mixture distribution affects the history of heat release rate. When fuel is distributed in the bottom or wide region in the combustion chamber, burned gas tends to spread to the cavity center and initial heat release rate becomes high. On the contrary, the high squish combustion chamber with central pip produces lower initial heat release rate because combustion with local rich condition continues long under the squish lip. Diffusion burning is promoted by high swirl motion in this chamber with keeping lower initial heat release rate.


Author(s):  
Jaekeun Park ◽  
Jaeou Chae

Abstract In-cylinder pressure of an internal combustion engine is considered to be a major source of information about combustion process. It is a generally accepted method to obtain an in-cylinder pressure signal using a pressure sensor (transducer). A different method of approach is presented in this study. The information about the in-cylinder pressure can be obtained by measuring breakdown voltage across the spark-plug gap. The density of gas inside the combustion chamber effect on the breakdown voltage of the spark plug, which is derived by the application of a high bias voltage (30kV) to the sparkplug gap continuously. The correlation between maximum breakdown voltage position and peak pressure position is established by this principle. So it is possible to detect the peak pressure position by measuring the breakdown voltage of the spark plug. The analyzing method of the breakdown voltage signal is also presented.


Author(s):  
Arturo de Risi ◽  
Teresa Donateo ◽  
Domenico Laforgia

Abstract CFD simulations need a certain number of parameters to calibrate both empirical and analytical models. The present investigation aims at identifying the effects of these parameters on the numerical prediction of a modified version of Kiva 3V code, which includes the use of the RNG k-ε model for turbulence, the gas/wall convective heat transfer model proposed by Han, Kelvin-Helmholtz Rayleigh-Taylor spray injection and breakup models. Ignition delay was modeled with the Shell model, whereas the laminar-turbulent characteristic time model was used for combustion. Soot formation and oxidation were calculated using Hiroyasu and Nagle and Strickland-Constable models, respectively. NOx was predicted by using the extended Zel’dovich mechanism. This study was carried out for a common-rail direct injection, small-bore Diesel engine, including the investigation of both numerical and physical parameters. Numerical parameters are intended to be variables related to breakup, turbulence, and combustion models that are adjusted according to grid resolution, engine and injection system geometry, and operating conditions. In particular, the effect of laminar and turbulent time scales, characteristic breakup length and time scales, initial turbulence kinetic energy density, initial swirl velocity profile, on engine emissions was analyzed. The investigated physical parameters were initial swirl ratio, air water content, Schmidt number for mass diffusion. All simulations were performed by changing one of the above parameters at each run and keeping approximately the same pressure and heat release rate curves. Results show that similar pressure vs. crank angle curves can be obtained with different values of these parameters but they lead to very different values of predicted emissions levels. In particular, changes of laminar and turbulent characteristic time resulted in a strong influence on NOx emissions but their effects on soot levels were minor. Mass diffusion characteristics (e.g. Schmidt number) were found to strongly affect both soot and NOx emissions. Spray parameters were found mainly to affect soot formation. Furthermore, NOx and soot emissions showed a dependence on swirl ratio and velocity profile.


Author(s):  
Gustavo Fontana ◽  
Enzo Galloni ◽  
Elio Jannelli

Abstract Combustion models, used in spark-ignition engine modeling, are reviewed. Different approaches for representing the main combustion features are reported. Limitations in simulating such a complex phenomenon as turbulent combustion in engines are highlighted as well. In order to compare different combustion models, the multidimensional program KIVA-3V has been used. The behavior of an actual spark-ignition engine has been investigated. In particular, simulation results, using simple chemical kinetics and mixing-controlled models, are compared. The results obtained, compared to measured data, confirm that different combustion models can lead to a satisfactory prediction of engine performances. But, in many cases, these models require experimental data for determining the model characteristic constants. A hybrid combustion model is proposed. It is able to provide a good reproduction of engine combustion process and, in particular, the model seems to be less sensitive to the engine operation. The computation results are compared to the measured data.


Author(s):  
Franz X. Tanner ◽  
Guang-Sheng Zhu ◽  
Rolf D. Reitz

Abstract A correction for the turbulence dissipation rate, based on non-equilibrium turbulence considerations from rapid distortion theory, has been derived and implemented in combination with the RNG k–ε model in a KIVA-based code. This correction reflects the time delay between changes in the turbulent kinetic energy due to changes in the mean flow and its turbulence dissipation rate, and it is shown that this time delay is controlled by the turbulence Reynolds number. The model correction has been validated with experimental data in the compression and expansion phase of a small diesel engine operated in motored mode. Combustion simulations of two heavy-duty DI diesel engines have been performed with the RNG k–ε model and the dissipation rate correction. The focus of these computations has been on the nitric oxide formation and the net soot production. These simulations have been compared with experimental data and their behavior is explained in terms of the turbulence dissipation effect on the transport coefficients for mass and heat diffusion. It has been found, that the dissipation correction yields consistent results with observations reported in previous studies.


Author(s):  
Hilde Willems ◽  
Roger Sierens

Abstract The initial size and growth of the plasma and flame kernel just after spark discharge in S.I. engines determines if the flame becomes self-sustainable or extinguishes. On the other hand the development of the kernel during the initial phases has non-negligible influences on the further combustion. For example cyclic variations often find their origin in the beginning of combustion and determine the working limits of the engine and the driving behavior of the vehicle. These factors demonstrate the crucial importance of the knowledge of the initial growth of the plasma and flame kernel in S.I. engines. A complete model is developed for the growth of the initial plasma and flame kernel in S.I. engines, which takes into account the fundamental properties of the ignition system (electrical energy and power, geometry of the spark plug, heat losses to the electrodes and the cylinder wall), the combustible mixture (pressure, temperature, equivalence ratio, fraction of residual gasses, kind of fuel) and the flow (average flow velocity, turbulence intensity, stretch, characteristic time and length scales). The proposed model distinguishes three phases: the prebreakdown, the plasma and the initial combustion phase. The model of the first two phases is proposed in a previous article of the same authors (Willems and Sierens, 1999), the latter is exposed in this article. A thermodynamic model based on flamelet models and which takes stretch into account, is used to describe the initial combustion phase. The difference between heat losses to the electrodes and the cylinder wall is considered. The burning velocity varies from the order of the laminar velocity to the fully developed burning velocity. The evolution is determined as well by the life time as by the size of the kernel. The stretch (caused by turbulence and by the growth of the kernel), the non-adiabatic character of the flame and instabilities have influence on the laminar burning velocity. Validation of this model is done using measurements of the expansion in a propane-air mixture executed by Pischinger at M.I.T. The correspondence seems to be very well.


Sign in / Sign up

Export Citation Format

Share Document