Measurement of Fracture Strains for Advanced High Strength Steels (AHSS) Using Digital Image Correlation

2009 ◽  
Vol 2 (1) ◽  
pp. 482-486 ◽  
Author(s):  
Gang Huang ◽  
Benda Yan ◽  
Hong Zhu
2014 ◽  
Vol 980 ◽  
pp. 122-126 ◽  
Author(s):  
Michaela Štamborská ◽  
Miroslav Kvíčala ◽  
Monika Losertová

Identification of the mechanical properties of high-strength steel using digital image correlation. In this paper an experimental procedure to identify the plastic behaviour of sheet metals up to large strains using full field measurement is presented. The tests were conducted on notched specimens. This geometry generates a heterogeneous strain field which was measured during the test using a digital image correlation system. The advantage of using a heterogeneous strain field in the identification procedure is that a complex state of stress-strain can be analyzed at the same time and much more information can be obtained in a single test. On the other hand, the stress field cannot be directly computed from the test and a suitable identification procedure must be developed. Here, the virtual fields method (VFM) adapted for large strains and plasticity was used to identify the hardening behaviour and the anisotropy of the material. The values obtained with the VFM were compared with the results from a standard identification made using uniaxial tensile tests.


2021 ◽  
Vol 63 (4) ◽  
pp. 303-310
Author(s):  
Feipeng Zhu ◽  
Xiaoxia Gu ◽  
Pengxiang Bai ◽  
Dong Lei

Abstract High-strength steel plays an important role in engineering fields such as infrastructure. For this reason, an accurate determination of its mechanical properties is of critical importance. Considering the inconvenience of conventional mechanical extensometers for the deformation measurement of small-scale specimens, 3D digital image correlation (3D-DIC) was used to measure the deformation of Grade 8.8 bolts and Q690 high-strength steel specimens by means of a uniaxial tensile test, and in this way, stress–strain curves, elastic modulus, yield strength, tensile strength, percentage elongation after fracture, and percentage reduction of area were obtained. Experimental results show that Grade 8.8 bolts and Q690 steel result in higher yield strength and tensile strength than common steel. Moreover, owing to the phenomenon that stress remains constant with strain increase in the yielding stage, the evolution process from elastic deformation to plastic deformation of the specimens during the yielding stage could be studied. Experimental results show that the axial strain of Grade 8.8 bolts increases from 0.3 to 1 % during the yielding stage and for Q690 specimens the corresponding strain increases from 0.4 to 1.8 %.


Sign in / Sign up

Export Citation Format

Share Document