Identification of the Mechanical Properties of High-Strength Steel Using Digital Image Correlation

2014 ◽  
Vol 980 ◽  
pp. 122-126 ◽  
Author(s):  
Michaela Štamborská ◽  
Miroslav Kvíčala ◽  
Monika Losertová

Identification of the mechanical properties of high-strength steel using digital image correlation. In this paper an experimental procedure to identify the plastic behaviour of sheet metals up to large strains using full field measurement is presented. The tests were conducted on notched specimens. This geometry generates a heterogeneous strain field which was measured during the test using a digital image correlation system. The advantage of using a heterogeneous strain field in the identification procedure is that a complex state of stress-strain can be analyzed at the same time and much more information can be obtained in a single test. On the other hand, the stress field cannot be directly computed from the test and a suitable identification procedure must be developed. Here, the virtual fields method (VFM) adapted for large strains and plasticity was used to identify the hardening behaviour and the anisotropy of the material. The values obtained with the VFM were compared with the results from a standard identification made using uniaxial tensile tests.

2015 ◽  
Vol 1119 ◽  
pp. 816-820
Author(s):  
Michaela Štamborská ◽  
Miroslav Kvíčala ◽  
Monika Losertová

This article is aimed at determining the mechanical properties of high-strength steel obtained by digital image correlation for specimens with a hole in different rolling direction. This geometry generates a heterogeneous strain field which was measured during the test using a digital image correlation system. The advantage of using a heterogeneous strain field in the identification procedure is that a complex state of stress-strain can be analyzed at the same time and much more information can be obtained in a single test. On the other hand, the stress field cannot be directly computed from the test and a suitable identification procedure must be developed. Here, the virtual fields method (VFM) adapted for large strains and plasticity was used to identify the hardening behaviour and the anisotropy of the material. The values obtained with the VFM were compared with the results from a standard identification made using uniaxial tensile tests.


2021 ◽  
Vol 63 (4) ◽  
pp. 303-310
Author(s):  
Feipeng Zhu ◽  
Xiaoxia Gu ◽  
Pengxiang Bai ◽  
Dong Lei

Abstract High-strength steel plays an important role in engineering fields such as infrastructure. For this reason, an accurate determination of its mechanical properties is of critical importance. Considering the inconvenience of conventional mechanical extensometers for the deformation measurement of small-scale specimens, 3D digital image correlation (3D-DIC) was used to measure the deformation of Grade 8.8 bolts and Q690 high-strength steel specimens by means of a uniaxial tensile test, and in this way, stress–strain curves, elastic modulus, yield strength, tensile strength, percentage elongation after fracture, and percentage reduction of area were obtained. Experimental results show that Grade 8.8 bolts and Q690 steel result in higher yield strength and tensile strength than common steel. Moreover, owing to the phenomenon that stress remains constant with strain increase in the yielding stage, the evolution process from elastic deformation to plastic deformation of the specimens during the yielding stage could be studied. Experimental results show that the axial strain of Grade 8.8 bolts increases from 0.3 to 1 % during the yielding stage and for Q690 specimens the corresponding strain increases from 0.4 to 1.8 %.


2016 ◽  
Vol 879 ◽  
pp. 363-368 ◽  
Author(s):  
P.A.M.G.P. Bamberg ◽  
Uwe Reisgen ◽  
B. Marx ◽  
J.D.V. Barbosa ◽  
R.S. Coelho

Structural adhesives methods for joining multi material sheets have been focus of studies and researches for the last years. The most common and widely known type of test is the tensile test of single lap joints (SLJ). However, there are opportunities for analyzing the mechanical performance of such method in SLJ with materials of different properties, such as ductile structural aluminum alloys and high strength steels. It’s also known that the stress state of SLJ, when stressed longitudinally, generates secondary forces. One of them is known as cleavage force which initially leads to the failure of bonded joints. The aim of this work is to analyze the stress state of similar and dissimilar materials SLJ submitted to tensile stresses and also the influence of some variables, such as overlap length, adhesive film thickness and adherend yield limit, over the stress strength of the samples. As adherend materials it was selected the structural aluminum alloy AA 5083 H111 and the high strength steel DP600. At the end of this work it is expected to understand the proper stress state of the SLJ when using similar and dissimilar materials, identifying stress concentrators that bring the structure to fail, using the Digital Image Correlation (DIC) method. It was discovered that the yield strength associated with the overlap length highly influences the SLJ strength, by leading it to a close to pure adhesive shear stress state.


2019 ◽  
Vol 13 (5) ◽  
pp. 1487-1494 ◽  
Author(s):  
Anliang Wang ◽  
Zhijun Wei ◽  
Xiaodong Chen ◽  
Shunying Ji ◽  
Yu Liu ◽  
...  

Abstract. The study of the mechanical properties of sea ice benefits the parameterization of sea-ice numerical models and the optimization of engineering design. Deformation measurement of sea ice has been seen as the essential foundation for the study of these properties. However, this measurement has proved to be difficult due to the complex and nonhomogeneous mechanical properties of sea ice. In this paper, we took advantage of DIC (digital image correlation) to obtain the full-field displacement and strain of sea-ice specimens in a uniaxial compression experiment. Full-field deformations of sea ice under both vertical and horizontal loading were measured. Different mechanical behaviors such as microcracks and failure modes due to the anisotropic properties of sea ice were successfully captured. The nonuniformity and local concentration of the strain field were observed and analyzed. Additionally, we evaluated the displacement and strain field of the specimens to verify the feasibility and accuracy of the method. This successful application provides a convenient and powerful option for the study of sea-ice mechanical properties including failure modes, nonlinear behavior and crack propagation.


2016 ◽  
Vol 32 (4) ◽  
pp. 328-337 ◽  
Author(s):  
S. Banerjee ◽  
T. Dasgupta ◽  
S. Mukherjee ◽  
M. Shome ◽  
P. C. Chakraborti ◽  
...  

2020 ◽  
Vol 24 (4) ◽  
pp. 19-30
Author(s):  
Anna Makuch ◽  
Grzegorz Mońka ◽  
Joanna Klimek ◽  
Konstanty Skalski

The problem of the possibility of using digital image correlation to assess changes in the mechanical properties of a polymer composite with the addition of graphene (1% by weight) in the form of flakes was taken up in the paper. Samples for uniaxial tensile testing were produced by selective laser sintering from polyamide powder particles and multi-flake graphene. In the tests carried out using the three-camera system, a variable strain distribution was recorded in the heterogenic PA-G composite material. Maps developed in the evaluation process – in particular, tangential deformations – allowed to conclude the impact of axial load on PA-G behaviour in time in the area of the polymer matrix, graphene agglomerates, and their interfaces. The research showed that the digital image correlation technique is a perfect complement to traditional mechanical tests when determining the properties of new heterogeneous composites, in particular, polyamide-graphene composite. Real-time observation of changes in the material map allows for a detailed analyzes of complex micromechanical aspects.


Sign in / Sign up

Export Citation Format

Share Document