Quantitative Analysis on Cycle Fuel Injection Quantity Fluctuation of Diesel Engine Electronic In-line Pump System

Author(s):  
Fan Liyun ◽  
Zhu Yuanxian ◽  
Ma Xiuzhen ◽  
Tian Bingqi ◽  
Song Enzhe ◽  
...  
Energy ◽  
2020 ◽  
Vol 211 ◽  
pp. 118946
Author(s):  
Qi Lan ◽  
Yun Bai ◽  
Liyun Fan ◽  
Yuanqi Gu ◽  
Liming Wen ◽  
...  

Author(s):  
L. F. Martyn ◽  
T. M. B. Silcock

The torsional vibrations which occur on the fuel injection pump of an automotive diesel engine were investigated. Calculations and tests showed that as well as vibrations transmitted from the crankshaft, the fuel pump could vibrate at the natural frequency of the torsional system consisting of the pump and the drive coupling against an infinite mass. This was excited by harmonic torques produced by the pump. Calculations were made to show the effect of variables on the natural frequency of the pump system including the instance when a crankshaft natural frequency coincided with a pump natural frequency. Calculations were also made of the effect of the engine harmonic torques on the pump vibrations. The results were verified by experiments.


Author(s):  
Guojin Chen ◽  
Jiawen Wang ◽  
Chang Chen ◽  
Yiming Yuan ◽  
Long Xu

Aiming at the problems of low precision, poor anti-interference and poor follow-up in the control parameters for the diesel engine fuel injection system, this paper studies the control method of the high-pressure common rail electronic control fuel injection system of the diesel engine, constructs the high-pressure common rail fuel injection control system based on the ECU, and establishes the speed segment PID control model of fuel injection quantity, common rail pressure, fuel injection timing and fuel injection rate by using MATLAB/Simulink. The fuel injection quantity and timing are simulated. In order to realize all-round and flexible control of the diesel engine under different working conditions, and to achieve the desired optimal performance in all aspects, the optimization control method of the injection law for the diesel engine is studied. The diesel engine fuel injection control strategy based on speed segment PID and operating parameter adaptation is proposed to realize precise control of the common rail pressure, injection quantity, injection timing and injection rate under different working conditions. The simulation calculation and bench test show that the maximum fluctuation of rail pressure at idle speed is only 5 MPa, and the time to reach stability is only 1.25 s, which greatly improves the control accuracy, anti-interference and follow-up ability of the injection parameters.


Sign in / Sign up

Export Citation Format

Share Document